Tribology Letters

, Volume 56, Issue 1, pp 171–183 | Cite as

The Contact of Elastic Regular Wavy Surfaces Revisited

  • Vladislav A. Yastrebov
  • Guillaume Anciaux
  • Jean-François Molinari
Original Paper

Abstract

We revisit the classic problem of an elastic solid with a two-dimensional wavy surface squeezed against an elastic flat half-space from infinitesimal to full contact. Through extensive numerical calculations and analytic derivations, we discover previously overlooked transition regimes. These are seen in particular in the evolution with applied load of the contact area and perimeter, the mean pressure and the probability density of contact pressure. These transitions are correlated with the contact area shape, which is affected by long range elastic interactions. Our analysis has implications for general random rough surfaces, as similar local transitions occur continuously at detached areas or coalescing contact zones. We show that the probability density of null contact pressures is nonzero at full contact. This might suggest revisiting the conditions necessary for applying Persson’s model at partial contacts and guide the comparisons with numerical simulations. We also address the evaluation of the contact perimeter for discrete geometries and the applicability of Westergaard’s solution for three-dimensional geometries.

Keywords

Wavy surface Elastic contact Contact area Contact perimeter Compactness of contact area Persson’s boundary condition Probability density of contact pressure 

Notes

Acknowledgments

We are grateful to James A. Greenwood and to anonymous reviewers for constructive comments. GA and JFM greatly acknowledge the financial support from the European Research Council (ERCstg UFO-240332).

References

  1. 1.
    Bribiesca, E.: Measuring 2-D shape compactness using the contact perimeter. Comput. Math. Appl. 33(11), 1–9 (1997)CrossRefGoogle Scholar
  2. 2.
    Bribiesca, E.: An easy measure of compactness for 2D and 3D shapes. Pattern Recognit. 41(2), 543–554 (2008)CrossRefGoogle Scholar
  3. 3.
    Bush, A.W., Gibson, R.D., Thomas, T.R.: The elastic contact of a rough surface. Wear 35(1), 87–111 (1975)CrossRefGoogle Scholar
  4. 4.
    Carbone, G., Bottiglione, F.: Asperity contact theories: Do they predict linearity between contact area and load? J. Mech. Phys. Solids 56, 2555–2572 (2008)CrossRefGoogle Scholar
  5. 5.
    Dapp, W.B., Lücke, A., Persson, B.N.J., Müser, M.H.: Self-affine elastic contacts: percolation and leakage. Phys. Rev. Lett. 108, 244,301 (2012)CrossRefGoogle Scholar
  6. 6.
    Dieterich, J.H., Kilgore, B.D.: Imaging surface contacts: power law contact distributions and contact stresses in quartz, calcite, glass and acrylic plastic. Tectonophysics 256(1–4), 219–239 (1996)CrossRefGoogle Scholar
  7. 7.
    Dorsey, G., Kuhlmann-Wilsdorf, D.: Metal fiber brushes. In: Slade, P.G. (ed.) Electric Contacts: Principles and Applications, 2nd edn. CRC Press, Boca Raton, FL (2014)Google Scholar
  8. 8.
    Einzel, D., Panzer, P., Liu, M.: Boundary condition for fluid flow: curved or rough surfaces. Phys. Rev. Lett. 64, 2269–2272 (1990)CrossRefGoogle Scholar
  9. 9.
    Gielis, J.: A generic geometric transformation that unifies a wide range of natural and abstract shapes. Am. J. Bot. 90(3), 333–338 (2003)CrossRefGoogle Scholar
  10. 10.
    Greenwood, J.A.: A simplified elliptic model of rough surface contact. Wear 261, 191–200 (2006)CrossRefGoogle Scholar
  11. 11.
    Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. A Math. Phys. Sci. 295, 300–319 (1966)CrossRefGoogle Scholar
  12. 12.
    Hyun, S., Robbins, M.O.: Elastic contact between rough surfaces: effect of roughness at large and small wavelengths. Tribol. Int. 40, 1413–1422 (2007)CrossRefGoogle Scholar
  13. 13.
    Johnson, K., Greenwood, J., Higginson, J.: The contact of elastic regular wavy surfaces. Int. J. Mech. Sci. 27(6), 383–396 (1985)CrossRefGoogle Scholar
  14. 14.
    Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987)Google Scholar
  15. 15.
    Kalker, J.J.: Variational principles of contact elastostatics. J. Inst. Math. Appl. 20, 199–219 (1977)CrossRefGoogle Scholar
  16. 16.
    Kalker, J.J., van Randen, Y.A.: A minimum principle for frictionless elastic contact with application to non Hertzian problems. J. Eng. Math. 6, 193–206 (1972)CrossRefGoogle Scholar
  17. 17.
    Krithivasan, V., Jackson, R.L.: An analysis of three-dimensional elasto-plastic sinusoidal contact. Tribol. Lett. 27(1), 31–43 (2007)CrossRefGoogle Scholar
  18. 18.
    Manners, W., Greenwood, J.A.: Some observations on Persson’s diffusion theory of elastic contact. Wear 261, 600–610 (2006)CrossRefGoogle Scholar
  19. 19.
    McCool, J.I.: Comparison of models for the contact of rough surfaces. Wear 107(1), 37–60 (1986)CrossRefGoogle Scholar
  20. 20.
    Nayak, P.R.: Random process model of rough surfaces. J. Lubr. Technol. (ASME) 93, 398–407 (1971)CrossRefGoogle Scholar
  21. 21.
    Pastewka, L., Robbins, M.O.: Contact between rough surfaces and a criterion for macroscopic adhesion. Proc. Natl. Acad. Sci. USA 111(9), 3298–3303 (2014)CrossRefGoogle Scholar
  22. 22.
    Persson, B.N.J.: Elastoplastic contact between randomly rough surfaces. Phys. Rev. Lett. 87, 116,101 (2001)CrossRefGoogle Scholar
  23. 23.
    Persson, B.N.J.: Theory of rubber friction and contact mechanics. J. Chem. Phys. 115, 3840–3861 (2001)CrossRefGoogle Scholar
  24. 24.
    Persson, B.N.J., Bucher, F., Chiaia, B.: Elastic contact between randomly rough surfaces: comparison of theory with numerical results. Phys. Rev. B 65, 184,106 (2002)CrossRefGoogle Scholar
  25. 25.
    Stanley, H.M., Kato, T.: An FFT-based method for rough surface contact. J. Tribol-T ASME 119, 481–485 (1997)CrossRefGoogle Scholar
  26. 26.
    Stover, J.C.: Optical Scattering: Measurements and Analysis, 3rd edn. SPIE Press, Bellingham (2012)Google Scholar
  27. 27.
    Thomas, T.R.: Rough Surfaces, 2nd edn. Imperial College Press, London (1999)Google Scholar
  28. 28.
    Westergaard, H.M.: Bearing pressures and cracks. J. Appl. Mech. (ASME) 6, 49 (1939)Google Scholar
  29. 29.
    Yang, C., Persson, B.N.J.: Contact mechanics: contact area and interfacial separation from small contact to full contact. J. Phys.-Condens. Matter 20(21), 215,214+ (2008)CrossRefGoogle Scholar
  30. 30.
    Yastrebov, V.A., Anciaux, G., Molinari, J.F.: Contact between representative rough surfaces. Phys. Rev. E 86(3), 035,601(R) (2012)CrossRefGoogle Scholar
  31. 31.
    Yastrebov, V.A., Anciaux, G., Molinari, J.F.: From infinitesimal to full contact between rough surfaces: evolution of the contact area (2014) arxiv.1401.3800

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Vladislav A. Yastrebov
    • 1
  • Guillaume Anciaux
    • 2
  • Jean-François Molinari
    • 2
  1. 1.MINES ParisTechPSL Research University, Centre des Matériaux, CNRS UMR 7633EvryFrance
  2. 2.Civil Engineering (LSMS, IIC-ENAC, IMX-STI)Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations