Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Wear, Plasticity, and Rehybridization in Tetrahedral Amorphous Carbon

  • 950 Accesses

  • 51 Citations


Wear in self-mated tetrahedral amorphous carbon (ta-C) films is studied by molecular dynamics and near-edge X-ray absorption fine structure spectroscopy. Both theory and experiment demonstrate the formation of a soft amorphous carbon (a-C) layer with increased sp2 content, which grows faster than an a-C tribolayer found on self-mated diamond sliding under similar conditions. The faster \(\hbox{sp}^{3} \rightarrow\,\hbox{ sp}^{2}\) transition in ta-C is explained by easy breaking of prestressed bonds in a finite, nanoscale ta-C region, whereas diamond amorphization occurs at an atomically sharp interface. A detailed analysis of the underlying rehybridization mechanism reveals that the \(\hbox{sp}^{3}\, \rightarrow\hbox{ sp}^{2}\) transition is triggered by plasticity in the adjacent a-C. Rehybridization therefore occurs in a region that has not yet experienced plastic yield. The resulting soft a-C tribolayer is interpreted as a precursor to the experimentally observed wear.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Robertson, J.: Diamond-like amorphous carbon. Mater. Sci. Eng. R. 37, 129–281 (2002)

  2. 2.

    Erdemir, A., Donnet, C.: Tribology of diamond-like carbon films. J. Phys. D Appl. Phys. 39, R311–R327 (2006)

  3. 3.

    Cho, S., Chasiotis, I., Friedmann, T.A., Sullivan, J.P.: Young’s modulus, Poisson’s ratio and failure properties of tetrahedral amorphous diamond-like carbon for MEMS devices. J. Micromech. Microeng. 15, 728–735 (2005)

  4. 4.

    Konicek, A.R., Grierson, D.S., Sumant, A.V., Friedmann, T.A., Sullivan, J.P., Gilbert, P.U. P.A., Sawyer, W.G., Carpick, R.W.: Influence of surface passivation on the friction and wear behavior of ultrananocrystalline diamond and tetrahedral amorphous carbon thin films. Phys. Rev. B 85, 155448 (2012)

  5. 5.

    Konicek, A.R., Grierson, D.S., Gilbert, P.U.P.A., Sawyer, W.G., Sumant, A.V., Carpick, R.W.: Origin of ultralow friction and wear in ultrananocrystalline diamond. Phys. Rev. Lett. 100, 235502 (2008)

  6. 6.

    Joly-Pottuz, L., Matta, C., de Barros Bouchet, M.I., Vacher, B., Martin, J.M., Sagawa, T.: Superlow friction of ta-C lubricated by glycerol. J. Appl. Phys. 102, 064912 (2007)

  7. 7.

    Schall, J.D., Gao, G., Harrison, J.A.: Effects of adhesion and transfer film formation on the tribology of self-mated DLC contacts. J. Phys. Chem. C 114, 5321–5330 (2010)

  8. 8.

    Schuh, C.A., Hufnagel, T.C., Ramamurty, U.: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067–4109 (2007)

  9. 9.

    Andersson, J., Erck, R.A., Erdemir, A.: Frictional behavior of diamond-like carbon films in vacuum and under varying water vapor pressure. Surf. Coat. Technol. 163(164), 535–540 (2003)

  10. 10.

    Pampillo, C.A., Chen, H.S.: Comprehensive plastic deformation of a bulk metallic glass. Mater. Sci. Eng. 13, 181–188 (1974)

  11. 11.

    Pastewka, L., Moser, S., Gumbsch, P., Moseler, M.: Anisotropic mechanical amorphization drives wear in diamond. Nat. Mater. 10, 34–38 (2011)

  12. 12.

    Shi, Y., Falk, M.L.: Strain localization and percolation of stable structure in amorphous solids. Phys. Rev. Lett. 95, 095502 (2005)

  13. 13.

    Widom, M., Strandburg, K.J., Swendsen, R.H.: Quasicrystal equilibrium state. Phys. Rev. Lett. 58, 706–709 (1987)

  14. 14.

    Falk, M.L., Langer, J.S.: Deformation and failure of amorphous materials. Annu. Rev. Condens. Matter Phys. 2, 353–373 (2011)

  15. 15.

    Falk, M.L., Langer, J.S.: Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E 57, 7192–7205 (1998)

  16. 16.

    Demkowicz, M.J., Argon, A.S.: High-density liquid-like component facilitates plastic flow in a model amorphous silicon system. Phys. Rev. Lett. 93, 025505 (2004)

  17. 17.

    Argon, A.S., Demkowicz, M.J.: What can plasticity of amorphous silicon tell us about plasticity of metallic glasses. Metall. Mater. Trans. A 39, 1762–1778 (2008)

  18. 18.

    Jäger, H.U., Albe, K.: Molecular-dynamics simulations of steady-state growth of ion-deposited tetrahedral amorphous carbon films. J. Appl. Phys. 88, 1129–1135 (2000)

  19. 19.

    Pastewka L., Pou P., Perez R., Gumbsch P., Moseler M. (2008) Describing bond-breaking processes by reactive potentials Importance: of an environment-dependent interaction range. Phys. Rev. B 78:161402(R)

  20. 20.

    Liu, Y., Erdemir, A., Meletis, E.I.: A study of the wear mechanism of diamond-like carbon films. Surf. Coat. Technol. 82, 48–56 (1996)

  21. 21.

    Harrison, J.A., Brenner, D.W.: Simulated tribochemistry: an atomic-scale view of the wear of diamond. J. Am. Chem. Soc. 116, 10399–10402 (1994)

  22. 22.

    Pastewka, L., Moser, S., Moseler, M.: Atomistic insights into the running-in, lubrication, and failure of hydrogenated diamond-like carbon coatings. Tribol. Lett. 39, 49–61 (2010)

  23. 23.

    Pastewka, L., Moser, S., Moseler, M., Blug, B., Meier, S., Hollstein, T., Gubsch, P.: The running-in of amorphous hydrocarbon tribocoatings: a comparison between experiment and molecular dynamics simulations. Int. J. Mater. Res. 10, 1136–1143 (2008)

  24. 24.

    Brenner, D.W., Shenderova, O.A., Harrison, J.A., Stuart S., J., Ni, B., Sinnott, S.B.: A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter. 14, 783–802 (2002)

  25. 25.

    Pastewka, L., Klemenz, A., Gumbsch, P., Moseler, M.: Screened empirical bond-order potentials for Si-C. Phys. Rev. B 87, 205410 (2013)

  26. 26.

    Pastewka, L., Mrovec, M., Moseler, M., Gumbsch, P.: Bond order potentials for fracture, wear, and plasticity. MRS Bull. 37, 493–503 (2012)

  27. 27.

    Field J., E.: . The Properties of Natural and Synthetic Diamond, Academic Press, London (1992)

  28. 28.

    Sumant A., V., Grierson, D.S., Gerbi, J.E., Carlisle, J.A., Auciello, O., Carpick, R.W.: Surface chemistry and bonding configuration of ultrananocrystalline diamond surfaces and their effects on nanotribological properties. Phys. Rev. B 76, 235429 (2007)

  29. 29.

    Casiraghi, C., Ferrari, A.C., Ohr, R., Chu, D., Robertson, J.: Surface properties of ultra-thin tetrahedral amorphous carbon films for magnetic storage technology. Diam. Relat. Mater. 13, 1416–1421 (2004)

  30. 30.

    Matta, C., Barros Bouchet, M.I., Le-Mogne, T., Vachet, B., Martin, J.M., Sagawa, T.: Tribochemistry of tetrahedral hydrogen-free amorphous carbon coatings in the presence of OH-containing lubricants. Lubr. Sci. 20, 137–149 (2008)

  31. 31.

    Bitzek, E., Koskinen, P., Gähler, F., Moseler, M., Gumbsch, P.: Structural relaxation made simple. Phys. Rev. Lett. 97, 170201 (2006)

  32. 32.

    Angadi, M.A., Watanabe, T., Bodapati, A., Xiao, X., Auciello, O., Carlisle, J.A., Eastman, J.A., Keblinski, P., Schelling, P.K., Phillpot, S.R.: Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin films. J. Appl. Phys. 99, 114301 (2006)

  33. 33.

    Balandin, A.A.: Thermal properties of graphene and nanostructured carbon materials. Nat. Mat. 10, 569–581 (2011)

  34. 34.

    Hird, J.R., Field, J.E.: Diamond polishing. Proc. R. Soc. Lond. A 460, 3547–3568 (2004)

  35. 35.

    Moras, G., Pastewka, L., Walter, M., Schnagl, J., Gumbsch, P., Moseler, M.: Progressive shortening of sp-hybridized carbon chains through oxygen-induced cleavage. J. Phys. Chem. C 115, 24653–24661 (2011)

  36. 36.

    Moras, G., Pastewka, L., Gumbsch, P., Moseler, M.: Formation and oxidation of linear carbon chains and their role in the wear of carbon materials. Tribol. Lett. 44, 355–365 (2011)

  37. 37.

    Krishnan, M., Nalaskowski, J.W., Cook, L.M.: Chemical mechanical planarization: slurry chemistry, materials, and mechanisms. Chem. Rev. 110, 178–204 (2010)

  38. 38.

    Moseler, M., Gumbsch, P., Casiraghi, C., Ferrari, A.C., Robertson, J.: The ultrasmoothness of diamond-lime carbon. Science 309, 1545 (2005)

  39. 39.

    Davis, C.A., Amaratunga, G.A.J., Knowles, K.M.: Growth mechanism and cross-sectional structure of tetrahedral amorphous carbon thin films. Phys. Rev. Lett. 80, 3280 (1998)

  40. 40.

    Merkle, A., Marks, L.P.: Liquid-like tribology of gold studied by in situ TEM. Wear 265, 1864–1869 (2008)

  41. 41.

    Mndange-Pfupfu, A., Eryilmaz, O., Erdemir, A.: Quantification of sliding-induced phase transformation in N3FC diamond-like carbon films and L.D. Marks. Diam. Relat. Mater. 20, 1143–1148 (2011)

  42. 42.

    Mndange-Pfupfu, A., Ciston, J., Eryilmaz, O., Erdemir, A., Marks, L.D.: Direct observation of tribochemically assisted wear on diamond-like carbon thin films. Tribol. Lett. 49, 351–356 (2013)

Download references


We thank M.L. Falk, P. Gumbsch, M.O. Robbins, and K.M. Salerno for useful discussion. T.K. and G.S. acknowledge funding by the European Center for Emerging Materials and Processes (ECEMP), financed by the European Union and the Free State of Saxony (Project No. 13857 / 2379). R.W.C. and A.R.K. acknowledge support from the Air Force Office of Scientific Research under Contract No. FA2386-11-1-4105 AOARD and from the UPenn MRSEC Program of the National Science Foundation under award No. DMR11-20901. We acknowledge W.G. Sawyer for tribological measurements and useful discussions, A.V. Sumant for providing UNCD films, and T.A. Friedmann for providing ta-C films. L.P. acknowledges funding from the European Commission (Marie-Curie IOF 272619). Computations were carried out at the Jlich Supercomputing Center.

Author information

Correspondence to Tim Kunze.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kunze, T., Posselt, M., Gemming, S. et al. Wear, Plasticity, and Rehybridization in Tetrahedral Amorphous Carbon. Tribol Lett 53, 119–126 (2014). https://doi.org/10.1007/s11249-013-0250-7

Download citation


  • Wear
  • Plasticity
  • Rehybridization
  • ta-C
  • Tribology