Tribology Letters

, Volume 53, Issue 1, pp 119–126 | Cite as

Wear, Plasticity, and Rehybridization in Tetrahedral Amorphous Carbon

  • Tim Kunze
  • Matthias Posselt
  • Sibylle Gemming
  • Gotthard Seifert
  • Andrew R. Konicek
  • Robert W. Carpick
  • Lars Pastewka
  • Michael Moseler
Original Paper

Abstract

Wear in self-mated tetrahedral amorphous carbon (ta-C) films is studied by molecular dynamics and near-edge X-ray absorption fine structure spectroscopy. Both theory and experiment demonstrate the formation of a soft amorphous carbon (a-C) layer with increased sp2 content, which grows faster than an a-C tribolayer found on self-mated diamond sliding under similar conditions. The faster \(\hbox{sp}^{3} \rightarrow\,\hbox{ sp}^{2}\) transition in ta-C is explained by easy breaking of prestressed bonds in a finite, nanoscale ta-C region, whereas diamond amorphization occurs at an atomically sharp interface. A detailed analysis of the underlying rehybridization mechanism reveals that the \(\hbox{sp}^{3}\, \rightarrow\hbox{ sp}^{2}\) transition is triggered by plasticity in the adjacent a-C. Rehybridization therefore occurs in a region that has not yet experienced plastic yield. The resulting soft a-C tribolayer is interpreted as a precursor to the experimentally observed wear.

Keywords

Wear Plasticity Rehybridization ta-C Tribology 

References

  1. 1.
    Robertson, J.: Diamond-like amorphous carbon. Mater. Sci. Eng. R. 37, 129–281 (2002)CrossRefGoogle Scholar
  2. 2.
    Erdemir, A., Donnet, C.: Tribology of diamond-like carbon films. J. Phys. D Appl. Phys. 39, R311–R327 (2006)CrossRefGoogle Scholar
  3. 3.
    Cho, S., Chasiotis, I., Friedmann, T.A., Sullivan, J.P.: Young’s modulus, Poisson’s ratio and failure properties of tetrahedral amorphous diamond-like carbon for MEMS devices. J. Micromech. Microeng. 15, 728–735 (2005)CrossRefGoogle Scholar
  4. 4.
    Konicek, A.R., Grierson, D.S., Sumant, A.V., Friedmann, T.A., Sullivan, J.P., Gilbert, P.U. P.A., Sawyer, W.G., Carpick, R.W.: Influence of surface passivation on the friction and wear behavior of ultrananocrystalline diamond and tetrahedral amorphous carbon thin films. Phys. Rev. B 85, 155448 (2012)CrossRefGoogle Scholar
  5. 5.
    Konicek, A.R., Grierson, D.S., Gilbert, P.U.P.A., Sawyer, W.G., Sumant, A.V., Carpick, R.W.: Origin of ultralow friction and wear in ultrananocrystalline diamond. Phys. Rev. Lett. 100, 235502 (2008)CrossRefGoogle Scholar
  6. 6.
    Joly-Pottuz, L., Matta, C., de Barros Bouchet, M.I., Vacher, B., Martin, J.M., Sagawa, T.: Superlow friction of ta-C lubricated by glycerol. J. Appl. Phys. 102, 064912 (2007)CrossRefGoogle Scholar
  7. 7.
    Schall, J.D., Gao, G., Harrison, J.A.: Effects of adhesion and transfer film formation on the tribology of self-mated DLC contacts. J. Phys. Chem. C 114, 5321–5330 (2010)CrossRefGoogle Scholar
  8. 8.
    Schuh, C.A., Hufnagel, T.C., Ramamurty, U.: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067–4109 (2007)CrossRefGoogle Scholar
  9. 9.
    Andersson, J., Erck, R.A., Erdemir, A.: Frictional behavior of diamond-like carbon films in vacuum and under varying water vapor pressure. Surf. Coat. Technol. 163(164), 535–540 (2003)CrossRefGoogle Scholar
  10. 10.
    Pampillo, C.A., Chen, H.S.: Comprehensive plastic deformation of a bulk metallic glass. Mater. Sci. Eng. 13, 181–188 (1974)CrossRefGoogle Scholar
  11. 11.
    Pastewka, L., Moser, S., Gumbsch, P., Moseler, M.: Anisotropic mechanical amorphization drives wear in diamond. Nat. Mater. 10, 34–38 (2011)CrossRefGoogle Scholar
  12. 12.
    Shi, Y., Falk, M.L.: Strain localization and percolation of stable structure in amorphous solids. Phys. Rev. Lett. 95, 095502 (2005)CrossRefGoogle Scholar
  13. 13.
    Widom, M., Strandburg, K.J., Swendsen, R.H.: Quasicrystal equilibrium state. Phys. Rev. Lett. 58, 706–709 (1987)CrossRefGoogle Scholar
  14. 14.
    Falk, M.L., Langer, J.S.: Deformation and failure of amorphous materials. Annu. Rev. Condens. Matter Phys. 2, 353–373 (2011)CrossRefGoogle Scholar
  15. 15.
    Falk, M.L., Langer, J.S.: Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E 57, 7192–7205 (1998)CrossRefGoogle Scholar
  16. 16.
    Demkowicz, M.J., Argon, A.S.: High-density liquid-like component facilitates plastic flow in a model amorphous silicon system. Phys. Rev. Lett. 93, 025505 (2004)CrossRefGoogle Scholar
  17. 17.
    Argon, A.S., Demkowicz, M.J.: What can plasticity of amorphous silicon tell us about plasticity of metallic glasses. Metall. Mater. Trans. A 39, 1762–1778 (2008)CrossRefGoogle Scholar
  18. 18.
    Jäger, H.U., Albe, K.: Molecular-dynamics simulations of steady-state growth of ion-deposited tetrahedral amorphous carbon films. J. Appl. Phys. 88, 1129–1135 (2000)CrossRefGoogle Scholar
  19. 19.
    Pastewka L., Pou P., Perez R., Gumbsch P., Moseler M. (2008) Describing bond-breaking processes by reactive potentials Importance: of an environment-dependent interaction range. Phys. Rev. B 78:161402(R)CrossRefGoogle Scholar
  20. 20.
    Liu, Y., Erdemir, A., Meletis, E.I.: A study of the wear mechanism of diamond-like carbon films. Surf. Coat. Technol. 82, 48–56 (1996)CrossRefGoogle Scholar
  21. 21.
    Harrison, J.A., Brenner, D.W.: Simulated tribochemistry: an atomic-scale view of the wear of diamond. J. Am. Chem. Soc. 116, 10399–10402 (1994)CrossRefGoogle Scholar
  22. 22.
    Pastewka, L., Moser, S., Moseler, M.: Atomistic insights into the running-in, lubrication, and failure of hydrogenated diamond-like carbon coatings. Tribol. Lett. 39, 49–61 (2010)CrossRefGoogle Scholar
  23. 23.
    Pastewka, L., Moser, S., Moseler, M., Blug, B., Meier, S., Hollstein, T., Gubsch, P.: The running-in of amorphous hydrocarbon tribocoatings: a comparison between experiment and molecular dynamics simulations. Int. J. Mater. Res. 10, 1136–1143 (2008)CrossRefGoogle Scholar
  24. 24.
    Brenner, D.W., Shenderova, O.A., Harrison, J.A., Stuart S., J., Ni, B., Sinnott, S.B.: A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter. 14, 783–802 (2002)CrossRefGoogle Scholar
  25. 25.
    Pastewka, L., Klemenz, A., Gumbsch, P., Moseler, M.: Screened empirical bond-order potentials for Si-C. Phys. Rev. B 87, 205410 (2013)CrossRefGoogle Scholar
  26. 26.
    Pastewka, L., Mrovec, M., Moseler, M., Gumbsch, P.: Bond order potentials for fracture, wear, and plasticity. MRS Bull. 37, 493–503 (2012)CrossRefGoogle Scholar
  27. 27.
    Field J., E.: . The Properties of Natural and Synthetic Diamond, Academic Press, London (1992)Google Scholar
  28. 28.
    Sumant A., V., Grierson, D.S., Gerbi, J.E., Carlisle, J.A., Auciello, O., Carpick, R.W.: Surface chemistry and bonding configuration of ultrananocrystalline diamond surfaces and their effects on nanotribological properties. Phys. Rev. B 76, 235429 (2007)CrossRefGoogle Scholar
  29. 29.
    Casiraghi, C., Ferrari, A.C., Ohr, R., Chu, D., Robertson, J.: Surface properties of ultra-thin tetrahedral amorphous carbon films for magnetic storage technology. Diam. Relat. Mater. 13, 1416–1421 (2004)CrossRefGoogle Scholar
  30. 30.
    Matta, C., Barros Bouchet, M.I., Le-Mogne, T., Vachet, B., Martin, J.M., Sagawa, T.: Tribochemistry of tetrahedral hydrogen-free amorphous carbon coatings in the presence of OH-containing lubricants. Lubr. Sci. 20, 137–149 (2008)CrossRefGoogle Scholar
  31. 31.
    Bitzek, E., Koskinen, P., Gähler, F., Moseler, M., Gumbsch, P.: Structural relaxation made simple. Phys. Rev. Lett. 97, 170201 (2006)CrossRefGoogle Scholar
  32. 32.
    Angadi, M.A., Watanabe, T., Bodapati, A., Xiao, X., Auciello, O., Carlisle, J.A., Eastman, J.A., Keblinski, P., Schelling, P.K., Phillpot, S.R.: Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin films. J. Appl. Phys. 99, 114301 (2006)CrossRefGoogle Scholar
  33. 33.
    Balandin, A.A.: Thermal properties of graphene and nanostructured carbon materials. Nat. Mat. 10, 569–581 (2011)CrossRefGoogle Scholar
  34. 34.
    Hird, J.R., Field, J.E.: Diamond polishing. Proc. R. Soc. Lond. A 460, 3547–3568 (2004)CrossRefGoogle Scholar
  35. 35.
    Moras, G., Pastewka, L., Walter, M., Schnagl, J., Gumbsch, P., Moseler, M.: Progressive shortening of sp-hybridized carbon chains through oxygen-induced cleavage. J. Phys. Chem. C 115, 24653–24661 (2011)CrossRefGoogle Scholar
  36. 36.
    Moras, G., Pastewka, L., Gumbsch, P., Moseler, M.: Formation and oxidation of linear carbon chains and their role in the wear of carbon materials. Tribol. Lett. 44, 355–365 (2011)CrossRefGoogle Scholar
  37. 37.
    Krishnan, M., Nalaskowski, J.W., Cook, L.M.: Chemical mechanical planarization: slurry chemistry, materials, and mechanisms. Chem. Rev. 110, 178–204 (2010)CrossRefGoogle Scholar
  38. 38.
    Moseler, M., Gumbsch, P., Casiraghi, C., Ferrari, A.C., Robertson, J.: The ultrasmoothness of diamond-lime carbon. Science 309, 1545 (2005)CrossRefGoogle Scholar
  39. 39.
    Davis, C.A., Amaratunga, G.A.J., Knowles, K.M.: Growth mechanism and cross-sectional structure of tetrahedral amorphous carbon thin films. Phys. Rev. Lett. 80, 3280 (1998)CrossRefGoogle Scholar
  40. 40.
    Merkle, A., Marks, L.P.: Liquid-like tribology of gold studied by in situ TEM. Wear 265, 1864–1869 (2008)CrossRefGoogle Scholar
  41. 41.
    Mndange-Pfupfu, A., Eryilmaz, O., Erdemir, A.: Quantification of sliding-induced phase transformation in N3FC diamond-like carbon films and L.D. Marks. Diam. Relat. Mater. 20, 1143–1148 (2011)CrossRefGoogle Scholar
  42. 42.
    Mndange-Pfupfu, A., Ciston, J., Eryilmaz, O., Erdemir, A., Marks, L.D.: Direct observation of tribochemically assisted wear on diamond-like carbon thin films. Tribol. Lett. 49, 351–356 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Tim Kunze
    • 1
  • Matthias Posselt
    • 2
  • Sibylle Gemming
    • 2
  • Gotthard Seifert
    • 1
  • Andrew R. Konicek
    • 3
  • Robert W. Carpick
    • 3
  • Lars Pastewka
    • 4
  • Michael Moseler
    • 4
  1. 1.Theoretical ChemistryUniversity of Technology DresdenDresdenGermany
  2. 2.Helmholtz-Zentrum Dresden-RossendorfDresdenGermany
  3. 3.Department of Mechanical Engineering and Applied MechanicsUniversity of PennsylvaniaPhiladelphiaUSA
  4. 4.Fraunhofer-Institut für Werkstoffmechanik IWMFreiburgGermany

Personalised recommendations