Tribology Letters

, Volume 52, Issue 1, pp 113–122 | Cite as

Surface Texturing of Drill Bits for Adhesion Reduction and Tool Life Enhancement

  • Tiffany Davis Ling
  • Pinzhi Liu
  • Shangwu Xiong
  • Donald Grzina
  • Jian Cao
  • Q. Jane Wang
  • Z. Cedric Xia
  • Rajesh Talwar
Original Paper

Abstract

Properly designed micro-scale surface textures can have positive impact on adhesion reduction and lubrication enhancement, which can lead to lower friction and improved performance of a contact interface. The present study aims to utilize this function of textures to reduce the adhesion between a drill and a workpiece. In this study, rectangular surface textures were generated on the margins of drill bits using a diode-pumped Nd:YVO4 picosecond laser with a wavelength of 532 nm. Two designs were created in which the textures covered approximately 10 and 20 % of the margin surface area. Textured drills were tested by drilling a series of holes in a titanium plate while recording cutting forces, and the results were compared with the performance of baseline samples. Thermographic heat profiles and visual inspections of the drills were taken at increments of 5 and 10–15 holes, respectively. The comparison demonstrated an encouraging improvement in drill bit life as judged by the number of holes drilled before failure. Textured drills were found to reduce adhesion of titanium chips on the drill margins. This work has demonstrated the potential of texturing to significantly improve the lifetime of drill bits and similar cutting tools.

Keywords

Laser surface texturing Tribology Micro-dimpling Drill bit Adhesion reduction 

References

  1. 1.
    Wang, X., Kato, K., Adachi, K., Aizawa, K.: The effect of laser texturing of SiC surface on the critical load for the transition of water lubrication mode from hydrodynamic to mixed. Tribol. Int. 34(10), 703–711 (2001)CrossRefGoogle Scholar
  2. 2.
    Etsion, I., Halperin, G., Brizmer, V., Kligerman, Y.: Experimental investigation of laser surface textured parallel thrust bearings. Tribol. Lett. 17(2), 295–300 (2004)CrossRefGoogle Scholar
  3. 3.
    Lu, X., Khonsari, M.M.: An experimental investigation of dimple effect on the stribeck curve of journal bearings. Tribol. Lett. 27(2), 169–176 (2007)CrossRefGoogle Scholar
  4. 4.
    Tian, H., Saka, N., Suh, N.: Boundary lubrication studies on undulated titanium surfaces. Tribol. Trans. 32(3), 289–296 (1988)CrossRefGoogle Scholar
  5. 5.
    Wakuda, M., Yamauchi, Y., Kanzaki, S., Yasuda, Y.: Effect of surface texturing on friction reduction between ceramic and steel materials under lubricated sliding contact. Wear 254(3–4), 356–363 (2003)CrossRefGoogle Scholar
  6. 6.
    Geiger, M., Popp, U., Engel, U.: Excimer laser micro texturing of cold forging tool surfaces—influence on tool life. Cirp. Ann. Manuf. Technol. 51(1), 231–234 (2002)CrossRefGoogle Scholar
  7. 7.
    Etsion, I.: State of the art in laser surface texturing. J. Tribol. 127(1), 248–253 (2005)CrossRefGoogle Scholar
  8. 8.
    Pettersson, U., Jacobson, S.: Influence of surface texture on boundary lubricated sliding contacts. Tribol. Int. 36(11), 857–864 (2003)CrossRefGoogle Scholar
  9. 9.
    Etsion, I., Halperin, G.: A laser surface textured hydrostatic mechanical seal. Tribol. Trans. 45(3), 430–434 (2002)CrossRefGoogle Scholar
  10. 10.
    Kovalchenko, A., Ajayi, O., Erdemir, A., Fenske, G., Etsion, I.: The effect of laser surface texturing on transitions in lubrication regimes during unidirectional sliding contact. Tribol. Int. 38(3), 219–225 (2005)CrossRefGoogle Scholar
  11. 11.
    Wang, Q.J., Zhu, D., Zhou, R., Hashimoto, F.: Investigating the effect of surface finish on mixed EHL in rolling and rolling-sliding contacts. Tribol. Trans. 51(6), 748–761 (2008)CrossRefGoogle Scholar
  12. 12.
    Nanbu, T., Ren, N., Yasuda, Y., Zhu, D., Wang, Q.J.: Micro-textures in concentrated conformal-contact lubrication: effects of texture bottom shape and surface relative motion. Tribol. Lett. 29(3), 241–252 (2008)CrossRefGoogle Scholar
  13. 13.
    Ren, N., Nanbu, T., Yasuda, Y., Zhu, D., Wang, Q.: Micro textures in concentrated-conformal-contact lubrication: effect of distribution patterns. Tribol. Lett. 28(3), 275–285 (2007)CrossRefGoogle Scholar
  14. 14.
    Tala-Ighil, N., Fillon, M., Maspeyrot, P.: Effect of textured area on the performances of a hydrodynamic journal bearing. Tribol. Int. 44(3), 211–219 (2011)CrossRefGoogle Scholar
  15. 15.
    Shinkarenko, A., Kligerman, Y., Etsion, I.: The effect of surface texturing in soft elasto-hydrodynamic lubrication. Tribol. Int. 42(2), 284–292 (2009)CrossRefGoogle Scholar
  16. 16.
    Ausas, R., Ragot, P., Leiva, J., Jai, M., Bayada, G., Buscaglia, G.C.: The impact of the cavitation model in the analysis of microtextured lubricated journal bearings. J. Tribol. 129(4), 868–875 (2007)CrossRefGoogle Scholar
  17. 17.
    de Kraker, A., van Ostayen, R.A.J., van Beek, A., Rixen, D.J.: A multiscale method modeling surface texture effects. J. Tribol. 129(2), 221–230 (2007)CrossRefGoogle Scholar
  18. 18.
    Sahlin, F., Glavatskih, S.B., Almqvist, T., Larsson, R.: Two-dimensional CFD-analysis of micro-patterned surfaces in hydrodynamic lubrication. J. Tribol. 127(1), 96–102 (2005)CrossRefGoogle Scholar
  19. 19.
    Kawasegi, N., Sugimori, H., Morimoto, H., Morita, N., Hori, I.: Drilling aluminum alloy using small-diameter drills with micro/nanometer-scale textures. Trans. Jpn. Soc. Mech. Eng. Part C 76(762), 446–452 (2010)Google Scholar
  20. 20.
    Sugihara, T., Enomoto, T.: Development of a cutting tool with a nano/micro-textured surface—improvement of anti-adhesive effect by considering the texture patterns. Precis. Eng. 33(4), 425–429 (2009)CrossRefGoogle Scholar
  21. 21.
    Lei, S.T., Devarajan, S., Chang, Z.H.: A study of micropool lubricated cutting tool in machining of mild steel. J. Mater. Process. Technol. 209(3), 1612–1620 (2009)CrossRefGoogle Scholar
  22. 22.
    Neves, D., Diniz, A.E., de Lima, M.S.: Efficiency of the laser texturing on the adhesion of the coated twist drills. J. Mater. Process. Technol. 179(1–3), 139–145 (2006)CrossRefGoogle Scholar
  23. 23.
    Davis, T., Zhou, R., Pallav, K., Beltran, M., Cao, J., Ehmann, K., Wang, Q.J., Xia, C., Talwar, R., Lederich, R.: Experimental friction study of micro-scale laser-textured surfaces. Paper presented at the international workshop on microfactories, Evanston, IL (2009)Google Scholar
  24. 24.
    Nolte, S., Momma, C., Jacobs, H., Tunnermann, A., Chickov, B.N., Wellegehausen, B., Welling, H.: Ablation of metals by ultrashort laser pulses. J. Opt. Soc. Am. 14(10), 2716–2722 (1997)CrossRefGoogle Scholar
  25. 25.
    Dausinger, F., Hugel, H., Konov, V.I.: Micro-machining with ultrashort laser pulses: from basic understanding to technical applications. In: Heinz P. Weber, Thomas Graf , V.I.K. (eds.) ALT’02 international conference on advanced laser technologies, pp. 106–115, Bellingham WA (2003). SPIEGoogle Scholar
  26. 26.
    Nedialkov, N.N., Imamova, S.E., Atanasov, P.A.: Ablation of metals by ultrashort laser pulses. J. Phys. D Appl. Phys. 37, 638–643 (2004)CrossRefGoogle Scholar
  27. 27.
    Breitling, D., Ruf, A., Dausinger, F.: Fundamental aspects in machining of metals with short and ultrashort laser pulses. In: Photon processing in microelectronics and photonics III, pp. 49–63. San Jose, CA, (2004). SPIEGoogle Scholar
  28. 28.
    Ostendorf, A., Kulik, C., Bauer, T., Baersch, N.: Ablation of metals and semiconductors with ultrashort pulsed lasers: improving surface qualities of microcuts and grooves. In: Commercial and biomedical applications of ultrafast lasers IV, pp. 153–163, San Jose, CA (2004). SPIEGoogle Scholar
  29. 29.
    Le Harzic, R., Breitling, D., Sommer, S., Fohl, C., Valette, S., Konig, K., Dausinger, F., Audouard, E.: Pulse duration and energy density influence on laser processing of metals with short and ultrashort pulses. In: Photon Processing in microelectronics and photonics IV, pp. 153–163, San Jose, CA (2005), pp. 115-122. SPIEGoogle Scholar
  30. 30.
    Hu, W.Q., Shin, Y.C., King, G.B.: Micromachining of metals, alloys, and ceramics by picosecond laser ablation. J. Manuf. Sci. Eng. Trans. ASME 132(1), 11009–11015 (2010)CrossRefGoogle Scholar
  31. 31.
    Davis, T., Cao, J.: Effect of laser pulse overlap on machined depth. Trans. NAMRI/SME 38, 291–298 (2010)Google Scholar
  32. 32.
    Meng, F., Zhou, R., Davis, T., Cao, J., Wang, Q.J., Hua, D., Liu, J.: Study on effect of dimples on friction of parallel surfaces under different sliding conditions. Appl. Surf. Sci. 256(9), 2863–2875 (2010)CrossRefGoogle Scholar
  33. 33.
    Zhu, D., Nanbu, N., Ren, N., Yasuda, Y., Wang, Q.: Model-based virtual surface texturing for concentrated conformal-contact lubrication. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 224(8), 685–696 (2010)CrossRefGoogle Scholar
  34. 34.
    Wang, Q.J., Zhu, D.: Virtual texturing: modeling the performance of lubricated contacts of engineered surfaces. J. Tribol. 127(4), 722–728 (2005)CrossRefGoogle Scholar
  35. 35.
    Xiong, S., Jane Wang, Q.: Steady-state hydrodynamic lubrication modeled with the Payvar–Salant mass conservation model. J. Tribol. 134(3), 031703 (2012)CrossRefGoogle Scholar
  36. 36.
    Payvar, P., Salant, R.F.: A computational method for cavitation in a wavy mechanical seal. J. Tribol. 114(1), 199–204 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Tiffany Davis Ling
    • 1
  • Pinzhi Liu
    • 1
  • Shangwu Xiong
    • 1
  • Donald Grzina
    • 2
  • Jian Cao
    • 1
  • Q. Jane Wang
    • 1
  • Z. Cedric Xia
    • 3
  • Rajesh Talwar
    • 2
  1. 1.Department of Mechanical EngineeringNorthwestern UniversityEvanstonUSA
  2. 2.Boeing Research and TechnologyThe Boeing CompanySt. LouisUSA
  3. 3.Research and Advanced EngineeringFord Motor CompanyDearbornUSA

Personalised recommendations