Tribology Letters

, Volume 51, Issue 3, pp 281–301 | Cite as

Boron in Tribology: From Borates to Ionic Liquids

  • Faiz Ullah ShahEmail author
  • Sergei Glavatskih
  • Oleg N. Antzutkin
Review Paper


Boron compounds are widely used in a range of tribological applications such as friction modifiers, antioxidants, antiwear additives, and in many cases as environmentally friendly lubricants. The chemical nature and structure of boron compounds provide multifunctionality. They are used as (1) solid lubricants such as boric acid and hexagonal boron nitride, (2) liquid lubricants such as ionic liquids, (3) lubricant additives such as borate derivatives of various organic and inorganic compounds, and (4) coatings such as cubic boron nitride and different metal borides. Boron is also one of the most favorable elements for coatings and thin films in biotribological and biomedical applications. This review outlines the growing role of boron in lubrication over the past several decades, summarizes the main findings, and identifies future challenges related to boron chemistry.


Boron compounds Lubricants Additives to lubricants Friction and wear Ionic liquids Greases 





Boron-based dialkyldithiophosphate








Boron-based dithiocarbamate


Molybdenum dithiocarbamate


Base oil




Boric oxide


Boron nitride


Boric acid




















Wear scar diameter


Diamond-like carbon


Ionic liquids


Room temperature ionic liquids


Hydrofluoric acid


Halogen-free chelated orthoborate ionic liquids


Bis(mandelato)borate anion


Bis(salicylato)borate anion


Bis(oxalato)borate anion


Bis(malonato)borate anion


Tributyloctylphosphonium cation


Tributyltetradecylphosphonium cation


Trihexyltetradecylphosphonium cation


1-Ethyl-2,3-dimethylimidazolium cation


Hexafluorophosphate anion


Tetrafluoroborate anion


Bis[trifluoromethylsulfonyl]imide anion


X-rays photoelectron spectroscopy


Energy dispersive spectroscopy


Nuclear magnetic resonance



The financial support provided by the Knut and Alice Wallenberg Foundation, the Foundation in memory of J. C. and Seth Kempe, the Swedish Government Agency for Innovation Systems (VINNOVA), and Luleå University of Technology is gratefully acknowledged.


  1. 1.
    Spikes, H.: The history and mechanisms of ZDDP. Tribol. Lett. 17, 469–489 (2004)CrossRefGoogle Scholar
  2. 2.
    Simmons, G.F., Glavatskih, S., Mueller, M., Byheden, Å., Prakash, B.: Extending performance limits of turbine oils. Tribol. Int. Submitted (2013)Google Scholar
  3. 3.
    Spikes, H.: Low- and zero-sulphated ash, phosphorus and sulphur anti-wear additives for engine oils. Lubr. Sci. 20, 103–136 (2008)CrossRefGoogle Scholar
  4. 4.
    McFadden, C., Soto, C., Spencer, N.D.: Adsorption and surface chemistry in tribology. Tribol. Int. 30, 881–888 (1997)CrossRefGoogle Scholar
  5. 5.
    Choudhary, R.B., Pande, P.P.: Lubrication potential of boron compounds: an overview. Lubr. Sci. 14, 211–222 (2002)CrossRefGoogle Scholar
  6. 6.
    Somers, A.E., Biddulph, S.M., Howlett, P.C., Sun, J., MacFarlane, D.R., Forsyth, M.: A comparison of phosphorus and fluorine containing IL lubricants for steel on aluminium. Phys. Chem. Chem. Phys. 14, 8224–8231 (2012)CrossRefGoogle Scholar
  7. 7.
    Chen, Y., Ye, C., Wang, H., Liu, W.: Tribological performance of an ionic liquid as a lubricant for steel/aluminum contacts. J. Synth. Lubr. 20, 217–226 (2003)CrossRefGoogle Scholar
  8. 8.
    Liu, W., Ye, C., Gong, Q., Wang, H., Wang, P.: Tribological performance of room-temperature ionic liquids as lubricant. Tribol. Lett. 13, 81–85 (2002)CrossRefGoogle Scholar
  9. 9.
    Sanes, J., Carrión, F.J., Jiménez, A.E., Bermúdez, M.D.: Influence of temperature on PA 6-steel contacts in the presence of an ionic liquid lubricant. Wear 263, 658–662 (2007)CrossRefGoogle Scholar
  10. 10.
    Sanes, J., Carrión, F.J., Bermúdez, M.D., Martínez-Nicolás, G.: Ionic liquids as lubricants of polystyrene and polyamide 6-steel contacts. Preparation and properties of new polymer-ionic liquid dispersions. Tribol. Lett. 21, 121–133 (2006)CrossRefGoogle Scholar
  11. 11.
    Herdan, J.M.: Friction modifiers in engine and gear oils. Lubr. Sci. 12, 265–276 (2000)CrossRefGoogle Scholar
  12. 12.
    Tse, J.: Boron charged under pressure. Nature 457, 800–801 (2009)CrossRefGoogle Scholar
  13. 13.
    Oganov, A., Chen, J., Gatti, C., Ma, Y.: Ionic high-pressure form of elemental boron. Nature 460, 292 (2009)CrossRefGoogle Scholar
  14. 14.
    Chung, H., Weinberger, M.B., Levine, J.B., Kavner, A., Yang, J.M., Tolbert, S.H., Kaner, R.B.: Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure. Science 316, 436–439 (2007)CrossRefGoogle Scholar
  15. 15.
    Martini, C., Palombarini, G., Carbucicchio, M.: Mechanism of thermochemical growth of iron borides on iron. J. Mater. Sci. 39, 933–937 (2004)CrossRefGoogle Scholar
  16. 16.
    Oganov, A.R., Solozhenko, V.L.: Boron: a hunt for superhard polymorphs. J. Superhard Mater. 31, 285–291 (2009)CrossRefGoogle Scholar
  17. 17.
    Entwistle, C., Marder, T.: Applications of three-coordinate organoboron compounds and polymers in optoelectronics. Chem. Mater. 16, 4574–4585 (2004)CrossRefGoogle Scholar
  18. 18.
    Piers, W.E., Bourke, S.C., Conroy, K.D.: Borinium, borenium, and boronium ions: synthesis, reactivity, and applications. Angew. Chem. Int. Ed. 44, 5016–5036 (2005)CrossRefGoogle Scholar
  19. 19.
    Kölle, P., Nöth, H.: The chemistry of borinium and borenium ions. Chem. Rev. 85, 399–418 (1985)CrossRefGoogle Scholar
  20. 20.
    Braunschweig, H., Colling, M.: Transition metal complexes of boron—synthesis, structure and reactivity. Coord. Chem. Rev. 223, 1–51 (2001)CrossRefGoogle Scholar
  21. 21.
    Levine, J., Tolbert, S., Kaner, R.: Advancements in the search for superhard ultra-incompressible metal borides. Adv. Funct. Mater. 19, 3519–3533 (2009)CrossRefGoogle Scholar
  22. 22.
    Petasis, N.A.: Expanding roles for organoboron compounds: versatile and valuable molecules for synthetic, biological and medicinal chemistry. Aust. J. Chem. 60, 795–798 (2007)CrossRefGoogle Scholar
  23. 23.
    Donnet, C., Erdemir, A.: Solid lubricant coatings: recent developments and future trends. Tribol. Lett. 17, 389–397 (2004)CrossRefGoogle Scholar
  24. 24.
    Erdemir, A.: Boron-based solid nanolubricants and lubrication additives. Nanolubricants, 203–223 (2008)Google Scholar
  25. 25.
    Rowe, G.W.: Some observations on the frictional behaviour of boron nitride and of graphite. Wear 3, 274–285 (1960)CrossRefGoogle Scholar
  26. 26.
    Mosuang, T.E., Lowther, J.E.: Relative stability of cubic and different hexagonal forms of boron nitride. J. Phys. Chem. Solids 63, 363–368 (2002)CrossRefGoogle Scholar
  27. 27.
    Engler, M., Lesniak, C., Damasch, R., Ruisinger, B., Eichler, J.: Hexagonal boron nitride (hBN)—applications from metallurgy to cosmetics. CFI Ceramic Forum Int. 84, E49–E53 (2007)Google Scholar
  28. 28.
    Koskilinna, J., Linnolahti, M., Pakkanen, T.: Friction coefficient for hexagonal boron nitride surfaces from ab initio calculations. Tribol. Lett. 24, 37–41 (2006)CrossRefGoogle Scholar
  29. 29.
    Martin, J.M., Le Mogne, T., Chassagnette, C., Gardos, M.N.: Friction of hexagonal boron nitride in various environments. Tribol. Trans. 35, 462–472 (1992)CrossRefGoogle Scholar
  30. 30.
    Watanabe, S., Miyake, S., Murakawa, M.: Tribological properties of cubic, amorphous and hexagonal boron nitride films. Surf. Coat. Technol. 49, 406–410 (1991)CrossRefGoogle Scholar
  31. 31.
    Jiang, X., Philip, J., Zhang, W.J., Hess, P., Matsumoto, S.: Hardness and Young’s modulus of high-quality cubic boron nitride films grown by chemical vapor deposition. J. Appl. Phys. 93, 1515–1519 (2003)CrossRefGoogle Scholar
  32. 32.
    Tokoro, H., Fujii, S., Oku, T.: Iron fine particles coated with boron nitride nanolayers synthesized by a solid phase reaction. Diamond Relat. Mater. 13, 1139–1143 (2004)CrossRefGoogle Scholar
  33. 33.
    Shrestha, N.K., Sakurada, K., Masuko, M., Saji, T.: Composite coatings of nickel and ceramic particles prepared in two steps. Surf. Coat. Technol. 140, 175–181 (2001)CrossRefGoogle Scholar
  34. 34.
    Rebholz, C., Ziegele, H., Leyland, A., Matthews, A.: Structure, mechanical and tribological properties of Ti–B–N and Ti–Al–B–N multiphase thin films produced by electron-beam evaporation. J. Vac. Sci. Techol. A. Vac. Surf. Films 16, 2851–2857 (1998)CrossRefGoogle Scholar
  35. 35.
    Wong, S.F., Ong, C.W., Pang, G.K.H., Li, Q., Lau, W.M.: Removal of sp2-boron nitride transition layer in the growth of cubic boron nitride films. Diamond Relat. Mater. 13, 1632–1637 (2004)CrossRefGoogle Scholar
  36. 36.
    Freudenstein, R., Kulisch, W.: Improvement of the adhesion of c-BN films by bias-graded h-BN interlayers. Thin Solid Films 420–421, 132–138 (2002)CrossRefGoogle Scholar
  37. 37.
    Wong, S., Ong, C., Pang, G., Baba Kishi, K., Lau, W.: Effects of the insertion of a thick Sp2 buffer layer on the adhesion of cBN-rich film. J. Vac. Sci. Techol. A. Vac. Surf. Films 22, 676–682 (2004)CrossRefGoogle Scholar
  38. 38.
    Erdemir, A., Eryilmaz, O.L., Fenske, G.R.: Self-replenishing solid lubricant films on boron carbide. Surf. Eng. 15, 291–295 (1999)CrossRefGoogle Scholar
  39. 39.
    Erdemir, A., Fenske, G.R., Erck, R.A., Nichols, F.A., Busch, D.E.: Tribological properties of boric acid and boric-acid-forming surfaces. Part II. Mechanisms of formation and self-lubrication of boric acid films on boron- and boric oxide-containing surfaces. Lubr. Eng. 47, 179–184 (1991)Google Scholar
  40. 40.
    Erdemir, A.: Tribological properties of boric acid and boric-acid-forming surfaces. Part I. Crystal chemistry and mechanism of self-lubrication of boric acid. Lubr. Eng. 47, 168–173 (1991)Google Scholar
  41. 41.
    Lovell, M., Higgs, C.F., Deshmukh, P., Mobley, A.: Increasing formability in sheet metal stamping operations using environmentally friendly lubricants. J. Mater. Process. Technol. 177, 87–90 (2006)CrossRefGoogle Scholar
  42. 42.
    Erdemir, A., Fenske, G.R., Erck, R.A.: Study of the formation and self-lubrication mechanisms of boric acid films on boric oxide coatings. Surf. Coat. Technol. 44, 588–596 (1990)CrossRefGoogle Scholar
  43. 43.
    Sawyer, W.G., Ziegert, J.C., Schmitz, T.L., Barton, T.: In-situ lubrication with boric acid: powder delivery of an environmentally benign solid lubricant. Tribol. Trans. 49, 284–290 (2006)CrossRefGoogle Scholar
  44. 44.
    Peterson, M., Murray, S., Florek, J.: Consideration of lubricants for temperatures above 1000 F. ASLE Trans. 2, 225–234 (1959)Google Scholar
  45. 45.
    Deshmukh, P., Lovell, M., Sawyer, W.G., Mobley, A.: On the friction and wear performance of boric acid lubricant combinations in extended duration operations. Wear 260, 1295–1304 (2006)CrossRefGoogle Scholar
  46. 46.
    Lovell, M.R., Kabir, M.A., Menezes, P.L., Higgs III, C.F.: Influence of boric acid additive size on green lubricant performance. Phil. Trans. Math. Phys. Eng. Sci. 368, 4851–4868 (2010)CrossRefGoogle Scholar
  47. 47.
    Kabir, M.A., Higgs III, C.F., Lovell, M.R.: A pin-on-disk experimental study on a green particulate-fluid lubricant. J. Tribol. 130, 041801–041806 (2008)CrossRefGoogle Scholar
  48. 48.
    Kartal, G., Timur, S., Urgen, U., Erdemir, A.: Influence of process duration on structure and chemistry of borided low carbon steel. Surf. Coat. Technol. 205, 1578–1583 (2010)CrossRefGoogle Scholar
  49. 49.
    Greco, A., Mistry, K., Sista, V., Eryilmaz, O., Erdemir, A.: Friction and wear behaviour of boron based surface treatment and nano-particle lubricant additives for wind turbine gearbox applications. Wear 271, 1754–1760 (2011)CrossRefGoogle Scholar
  50. 50.
    Kartal, G., Timur, S., Urgen, U., Erdemir, A.: Electrochemical boriding of titanium for improved mechanical properties. Surf. Coat. Technol. 204, 3935–3939 (2010)CrossRefGoogle Scholar
  51. 51.
    Torun, O.: Boriding of nickel aluminide. Surf. Coat. Technol. 202, 3549–3554 (2008)CrossRefGoogle Scholar
  52. 52.
    Bindal, C., Erdemir, A.: Ultralow friction behavior of borided steel surfaces after flash annealing. Appl. Phys. Lett. 68, 923–925 (1996)CrossRefGoogle Scholar
  53. 53.
    Erdemir, A., Bindal, C., Zuiker, C., Savrun, E.: Tribology of naturally occurring boric acid films on boron carbide. Surf. Coat. Technol. 86–87, 507–510 (1996)CrossRefGoogle Scholar
  54. 54.
    Erdemir, A., Halter, M., Fenske, G.R.: Preparation of ultralow-friction surface films on vanadium diboride. Wear 205, 236–239 (1997)CrossRefGoogle Scholar
  55. 55.
    Köster, R.: Organoboron chemistry. In: Von Steinberg, H. (ed.) Band 1: Boron-oxygen and boron-sulfur compounds. Interscience publishers, Wiley, New-York, London, Sidney 1964. Angew. Chem. 77, 108–108 (1965)Google Scholar
  56. 56.
    Rosen R.: Hydrocarbon composition containing organic boron compounds. US patent, No. 2234581 (1941)Google Scholar
  57. 57.
    Kreuz, K.L., Fein, R.S., Dundy, M.: EP films from borate lubricants. ASLE Trans. 10, 67–76 (1967)CrossRefGoogle Scholar
  58. 58.
    Baldwin, B.A.: Relative antiwear efficiency of boron and sulfur surface species. Wear 45, 345–353 (1977)CrossRefGoogle Scholar
  59. 59.
    Liu, W., Jin, Z., Xue, Q.: The performance and antiwear mechanism of S-containing organic borate as an oil additive. Lubr. Sci. 7, 49–60 (1994)CrossRefGoogle Scholar
  60. 60.
    Yao, J.: Antiwear function and mechanism of borate containing nitrogen. Tribol. Int. 30, 387–389 (1997)CrossRefGoogle Scholar
  61. 61.
    Stanulov, K.G., Harhara, H.N., Cholakov, G.S.: An opportunity for partial replacement of phosphates and dithiophosphates in EP packages with boron-containing additives. Tribol. Int. 31, 257–263 (1998)CrossRefGoogle Scholar
  62. 62.
    Philippon, D., De Barros-Bouchet, M., Lerasle, O., Le Mogne, T., Martin, J.-M.: Experimental simulation of tribochemical reactions between borates esters and steel surface. Tribol. Lett. 41, 73–82 (2011)CrossRefGoogle Scholar
  63. 63.
    Zheng, Z., Shen, G., Wan, Y., Cao, L., Xu, X., Yue, Q., Sun, T.: Synthesis, hydrolytic stability and tribological properties of novel borate esters containing nitrogen as lubricant additives. Wear 222, 135–144 (1998)CrossRefGoogle Scholar
  64. 64.
    Wang, J., Wang, J., Li, C., Zhao, G., Wang, X.: A high-performance multifunctional lubricant additive for water-glycol hydraulic fluid. Tribol. Lett. 43, 235–245 (2011)CrossRefGoogle Scholar
  65. 65.
    Miller, B.P., Fulong, J.O., Tysoe, W.T.: Surface chemistry of isopropoxy tetramethyl dioxaborolane on Cu(111). Langmuir 28, 6322–6327 (2012)CrossRefGoogle Scholar
  66. 66.
    Miller, B.P., Kotvis, P.V., Furlong, O.J., Tysoe, W.T.: Relating molecular structure to tribological chemistry: borate esters on copper. Tribol. Lett. 49, 1–9 (2012)CrossRefGoogle Scholar
  67. 67.
    Wang, Y., Li, J., He, Z., Ren, T.: Investigation on phenyl-borated hydroxyalkyldithio-carbamate as multi-functional lubricating additive with high hydrolytic stability and anti-oxidation. Proc. Inst. Mech. Eng. Part J 222, 133–140 (2008)CrossRefGoogle Scholar
  68. 68.
    Sharma, B., Doll, K., Heise, G., Myslinska, M., Erhan, S.: Antiwear additive derived from soybean oil and boron utilized in a gear oil formulation. Ind. Eng. Chem. Res. 51, 11941–11945 (2012)CrossRefGoogle Scholar
  69. 69.
    Li, W., Wu, Y., Wang, X., Liu, W.: Tribological study of boron-containing soybean lecithin as environmentally friendly lubricant additive in synthetic base fluids. Tribol. Lett. 12, 1–8 (2012)CrossRefGoogle Scholar
  70. 70.
    Chen, P., Jäkle, F.: Highly luminescent, electron-deficient bora-cyclophanes. J. Am. Chem. Soc. 133, 20142–20145 (2011)CrossRefGoogle Scholar
  71. 71.
    Xu, W.: Anion-trapping and polyanion electrolytes based on acid-in-chain borate polymers. Electrochim. Acta 48, 2255–2266 (2003)CrossRefGoogle Scholar
  72. 72.
    Geiger, W.E.: Organometallic electrochemistry based on electrolytes containing weakly-coordinating fluoroarylborate anions. Acc. Chem. Res. 43, 1030–1039 (2010)CrossRefGoogle Scholar
  73. 73.
    Wornyoh, E.Y.A.: A review of dry particulate lubrication: powder and granular materials. J. Tribol. 129, 438–449 (2007)CrossRefGoogle Scholar
  74. 74.
    Adams, J.H.: Borate—a new generation EP gear lubricant. Lubr. Eng. 33, 241–246 (1977)Google Scholar
  75. 75.
    Kim, J.H., Mistry, K.K., Matsumoto, N., Sista, V., Eryilmaz, O.L., Erdemir, A.: Effect of surfactant on tribological performance and tribochemistry of boric acid based colloidal lubricants. Tribol. Mater. Surf. Interf. 6, 134–141 (2012)CrossRefGoogle Scholar
  76. 76.
    Kimura, Y., Wakabayashi, T., Okada, K., Wada, T., Nishikawa, H.: Boron nitride as a lubricant additive. Wear 232, 199–206 (1999)CrossRefGoogle Scholar
  77. 77.
    Liu, W., Zhang, C., Zhang, X., Xue, Q., Wang, H.: Antiwear properties of potassium borate as an oil additive. Lubr. Eng. 47, 344–347 (1991)Google Scholar
  78. 78.
    Hu, Z.S., Dong, J.X.: Study on antiwear and reducing friction additive of nanometer titanium borate. Wear 216, 87–91 (1998)CrossRefGoogle Scholar
  79. 79.
    Dong, J.X., Hu, Z.S.: A study of the anti-wear and friction-reducing properties of the lubricant additive, nanometer zinc borate. Tribol. Int. 31, 219–223 (1998)CrossRefGoogle Scholar
  80. 80.
    Tian, Y., Guo, Y., Jiang, M., Sheng, Y., Hari, B.: Synthesis of hydrophobic zinc borate nanodiscs for lubrication. Mater. Lett. 60, 2511–2515 (2006)CrossRefGoogle Scholar
  81. 81.
    Hu, Z.S., Shi, Y.G., Wang, L.G., Peng, Y., Chen, G.X., Dong, J.X.: Study on antiwear and reducing friction additive of nanometer aluminum borate. Lubr. Eng. 57, 23–27 (2001)Google Scholar
  82. 82.
    Chen, G.X., Hu, Z.S., Nai, R., Wang, L.G., Peng, Y., Dong, J.X.: Preparation and tribology of ultrafine and amorphous strontium borate. Proc. Inst. Mech. Eng. Pt. L. J. Mater. 215, 133–140 (2001)Google Scholar
  83. 83.
    Hu, Z.S., Lai, R., Lou, F., Wang, L.G., Chen, Z.L., Chen, G.X., Dong, J.X.: Preparation and tribological properties of nanometer magnesium borate as lubricating oil additive. Wear 252, 370–374 (2002)CrossRefGoogle Scholar
  84. 84.
    Zeng, Y., Yang, H., Fu, W., Qiao, L., Chang, L., Chen, J., Zhu, H., Li, M., Zou, G.: Synthesis of magnesium borate (Mg2B2O5) nanowires, growth mechanism and their lubricating properties. Mater. Res. Bull. 43, 2239–2247 (2008)CrossRefGoogle Scholar
  85. 85.
    Hu, Z.S., Dong, J.X., Chen, G.X., He, J.Z.: Preparation and tribological properties of nanoparticle lanthanum borate. Wear 243, 43–47 (2000)CrossRefGoogle Scholar
  86. 86.
    Kong, L., Hu, H., Wang, T., Huang, D., Fu, J.: Synthesis and surface modification of the nanoscale cerium borate as lubricant additive. J. Rare Earths 29, 1095–1099 (2011)CrossRefGoogle Scholar
  87. 87.
    Normand, V., Martin, J.M., Ponsonnet, L., Inoue, K.: Micellar calcium borate as an antiwear additive. Tribol. Lett. 5, 235–242 (1998)CrossRefGoogle Scholar
  88. 88.
    Martin, J.M., Grossiord, C., Varlot, K., Vacher, B., Igarashi, J.: Synergistic effects in binary systems of lubricant additives: a chemical hardness approach. Tribol. Lett. 8, 193–201 (2000)CrossRefGoogle Scholar
  89. 89.
    Grossiord, C., Martin, J.M., Varlot, K., Vacher, B., Le Mogne, T., Yamada, Y.: Tribochemical interactions between Zndtp, Modtc and calcium borate. Tribol. Lett. 8, 203–212 (2000)CrossRefGoogle Scholar
  90. 90.
    Masenelli-Varlot, K., Kasrai, M., Bancroft, G., De Stasio, G., Gilbert, B.: Spatial distribution of the chemical species generated under rubbing from ZDDP and dispersed potassium triborate. Tribol. Lett. 14, 157–166 (2003)CrossRefGoogle Scholar
  91. 91.
    Bakunin, V.N., Suslov, A.Y., Kuzmina, G.N., Parenago, O.P.: Recent achievements in the synthesis and application of inorganic nanoparticles as lubricant components. Lubr. Sci. 17, 127–145 (2005)CrossRefGoogle Scholar
  92. 92.
    Liu, N., Tian, Y., Yu, L., Li, Q., Meng, F., Zheng, Y., Zhang, G., Liu, Z., Li, J., Jiang, F.: Synthesis and surface modification of uniform barium borate nanorods for lubrication. J. Alloys Comp. 466, L11–L14 (2008)CrossRefGoogle Scholar
  93. 93.
    Jia, Z., Xia, Y.: Hydrothermal synthesis, characterization, and tribological behavior of oleic acid-capped lanthanum borate with different morphologies. Tribol. Lett. 41, 425–434 (2011)CrossRefGoogle Scholar
  94. 94.
    Singh, T., Singh, R., Verma, V.K., Nakayama, K.: A study of N, O and S heterocyclic compounds as extreme pressure lubricant additives. Tribol. Int. 23, 41–46 (1990)CrossRefGoogle Scholar
  95. 95.
    Zhang, J., Yang, S., Liu, W., Xue, Q.: A study of 2-(n-alkyldithio)-benzoxazoles as novel additives. Tribol. Lett. 7, 173–177 (1999)CrossRefGoogle Scholar
  96. 96.
    Zhang, J., Liu, W., Xue, Q.: A study of 2-(dibutylaminomethyl)-thiobenzimidazole as an oil additive. Wear 231, 279–284 (1999)CrossRefGoogle Scholar
  97. 97.
    Xue, Q., Zhang, J., Liu, W., Yang, S.: The friction and wear behavior of 2-(n-alkyldithio)-benzimidazole as additives in liquid paraffin. Tribol. Lett. 7, 27–30 (1999)CrossRefGoogle Scholar
  98. 98.
    Liang, P., Wu, H., Zuo, G., Ren, T.: Tribological performances of heterocyclic-containing ether and/or thioether as additives in the synthetic diester. Lubr. Sci. 21, 111–121 (2009)CrossRefGoogle Scholar
  99. 99.
    Babić-Samardžija, K., Lupu, C., Hackerman, N., Barron, A.R., Luttge, A.: Inhibitive properties and surface morphology of a group of heterocyclic diazoles as inhibitors for acidic iron corrosion. Langmuir 21, 12187–12196 (2005)CrossRefGoogle Scholar
  100. 100.
    Huang, W., Dong, J., Wu, G., Zhang, C.: A study of S-[2-(acetamido) benzothiazol-1-yl]N, N-dibutyl dithiocarbamate as an oil additive in liquid paraffin. Tribol. Int. 37, 71–76 (2004)CrossRefGoogle Scholar
  101. 101.
    Huang, W., Dong, J., Li, F., Chen, B.: Performance and antiwear mechanism of (2-sulfurone-benzothiazole)-3-methyl esters as additives in synthetic lubricant. Tribol. Int. 33, 553–557 (2000)CrossRefGoogle Scholar
  102. 102.
    Waynick, J.A.: The development and use of metal deactivators in the petroleum industry: a review. Energ. Fuel. 15, 1325–1340 (2001)CrossRefGoogle Scholar
  103. 103.
    Shen, G., Zheng, Z., Wan, Y., Xu, X., Cao, L., Yue, Q., Sun, T., Liu, A.: Synergistic lubricating effects of borate ester with heterocyclic compound. Wear 246, 55–58 (2000)CrossRefGoogle Scholar
  104. 104.
    Zhang, J., Liu, W., Xue, Q.: The tribological properties of the heterocyclic compound containing S, N, O, and B as additive in liquid paraffin. Wear 224, 68–72 (1999)CrossRefGoogle Scholar
  105. 105.
    Gao, Y., Jing, Y., Zhang, Z., Chen, G., Xue, Q.: Tribological properties of aqueous solution of imidazoline borates. Wear 253, 576–578 (2002)CrossRefGoogle Scholar
  106. 106.
    Li, J., Xu, X., Wang, Y., Ren, T.: Tribological studies on a novel borate ester containing benzothiazol-2-yl and disulfide groups as multifunctional additive. Tribol. Int. 43, 1048–1053 (2010)CrossRefGoogle Scholar
  107. 107.
    Jia, Z., Wang, P., Xia, Y., Zhang, H., Pang, X., Li, B.: Tribological behaviors of diamond-like carbon coatings on plasma nitrided steel using three BN-containing lubricants. Appl. Surf. Sci. 255, 6666–6674 (2009)CrossRefGoogle Scholar
  108. 108.
    Jia, Z., Xia, Y., Pang, X., Hao, J.: Tribological behaviors of different diamond-like carbon coatings on nitrided mild steel lubricated with benzotriazole-containing borate esters. Tribol. Lett. 41, 247–256 (2011)CrossRefGoogle Scholar
  109. 109.
    Verma, V.K., Singh, R., Srivastava, V., Singh, P.K.: EP/AW performance evaluation of some zinc alkyl/dialkyl/alkylaryl-dithiocarbamates in four-ball tests. Lubr. Sci. 16, 195–203 (2004)CrossRefGoogle Scholar
  110. 110.
    Chen, G., Chen, L., Dong, J.: Preparation and tribological behavior of oil soluble cerium dioctyl dithiocarbamate. Lubr. Eng. 53, 24–29 (1997)Google Scholar
  111. 111.
    Palacios, J.: Thickness and chemical composition of films formed by antimony dithiocarbamate and zinc dithiophosphate. Tribol. Int. 19, 35–39 (1986)CrossRefGoogle Scholar
  112. 112.
    Yamamoto, Y., Gondo, S., Tanaka, N.: Effect of graphite on friction and wear characteristics of molybdenum dithiocarbamate. Tribol. Lett. 17, 55–59 (2004)CrossRefGoogle Scholar
  113. 113.
    Shea, T., Stipanovic, A.: Solution phase reactions of organomolybdenum friction modifier additives for energy conserving engine oils. Tribol. Lett. 12, 13–22 (2002)CrossRefGoogle Scholar
  114. 114.
    Bouchet, M., Martin, J.-M., Le Mogne, T., Bilas, P., Vacher, B.: Mechanisms of MoS2 formation by MoDTC in presence of ZnDTP: effect of oxidative degradation. Wear 258, 1643–1650 (2005)CrossRefGoogle Scholar
  115. 115.
    Liu, C., Yue, W., Wang, C., Gao, X., Sun, X.: The interactions between sulfur-nitrided layer on steel surface and MoDTC lubricating additive and their effects on tribological performance. Tribol. Lett. 47, 313–322 (2012)CrossRefGoogle Scholar
  116. 116.
    Laine, E., Olver, A.V., Lekstrom, M.F., Shollock, B.A., Beveridge, T.A.: The effect of a friction modifier additive on micropitting. Tribol. Trans. 52, 526–533 (2009)CrossRefGoogle Scholar
  117. 117.
    Grossiord, C., Varlot, K., Martin, J.M., Le Mogne, T., Esnouf, C., Inoue, K.: MoS2 single sheet lubrication by molybdenum dithiocarbamate. Tribol. Int. 31, 737–743 (1998)CrossRefGoogle Scholar
  118. 118.
    Grossiord, C., Martin, J.M., Le Mogne, T., Palermo, T.: In situ MoS2 formation and selective transfer from MoDPT films. Surf. Coat. Technol. 108–109, 352–359 (1998)CrossRefGoogle Scholar
  119. 119.
    Morina, A., Neville, A., Priest, M., Green, J.H.: ZDDP and MoDTC interactions and their effect on tribological performance—Tribofilm characteristics and its evolution. Tribol. Lett. 24, 243–256 (2006)CrossRefGoogle Scholar
  120. 120.
    Morina, A., Neville, A., Priest, M., Green, J.H.: ZDDP and MoDTC interactions in boundary lubrication-The effect of temperature and ZDDP/MoDTC ratio. Tribol. Int. 39, 1545–1557 (2006)CrossRefGoogle Scholar
  121. 121.
    Huang, W., Tan, Y., Dong, J., Chen, B.: Tribological properties of the film formed by borated dioctyl dithiocarbamate as an additive in liquid paraffin. Tribol. Int. 35, 787–791 (2002)CrossRefGoogle Scholar
  122. 122.
    Huang, W., Hou, B., Zheng, Z., Xu, K., Liang, Y.: Friction and wear behavior of AZ91D magnesium alloy against steel lubricated with N- and S-containing organic borates. Lubr. Sci. 18, 77–86 (2006)CrossRefGoogle Scholar
  123. 123.
    Sun, Y., Hu, L., Xue, Q.: Tribological properties and action mechanism of N, N-dialkyl dithiocarbamate-derived S-hydroxyethyl borate esters as additives in rapeseed oil. Wear 266, 917–924 (2009)CrossRefGoogle Scholar
  124. 124.
    Shah, F.U., Glavatskih, S., Antzutkin, O.N.: Novel alkylborate-dithiocarbamate lubricant additives: synthesis and tribophysical characterization. Tribol. Lett. 45, 67–78 (2012)CrossRefGoogle Scholar
  125. 125.
    Shah, F. U., Glavatskih, S., Antzutkin, O. N.: Antiwear additives for lubricants. Swedish Patent. No., 535894 (2013)Google Scholar
  126. 126.
    Komvopoulos, K., Pernama, S.A., Ma, J., Yamaguchi, E.S., Ryason, P.R.: Synergistic effects of boron-, sulfur-, and phosphorus-containing lubricants in boundary lubrication of steel surfaces. Tribol. Trans. 48, 218–229 (2005)CrossRefGoogle Scholar
  127. 127.
    Komvopoulos, K., Chiaro, V., Pakter, B., Yamaguchi, E.S., Ryason, P.R.: Antiwear tribofilm formation on steel surfaces lubricated with gear oil containing borate, phosphorus, and sulfur additives. Tribol. Trans. 45, 568–575 (2002)CrossRefGoogle Scholar
  128. 128.
    Kim, S.M., Sit, C.Y., Komvopoulos, K., Yamaguchi, E.S., Ryason, P.R.: Boundary lubrication of steel surfaces with borate, phosphorus, and sulfur containing lubricants at relatively low and elevated temperatures. Tribol. Trans. 43, 569–578 (2000)CrossRefGoogle Scholar
  129. 129.
    Haiduc, I., Yoong Goh, L.: Reactions of bis(thiophosphoryl)disulfanes and bis(thiophosphinyl)disulfanes with metal species: An alternative, convenient route to metal complex and organometallic dithiophosphates and dithiophosphinates. Coord. Chem. Rev. 224, 151–170 (2002)CrossRefGoogle Scholar
  130. 130.
    Clegg, W., Elsegood, M., Lawlor, F., Norman, N., Pickett, N.: Structural studies of bis-catecholate, bis-dithiocatecholate, and tetraalkoxydiborane(4) compounds. Inorg. Chem. 37, 5289–5293 (1998)CrossRefGoogle Scholar
  131. 131.
    Lawlor, F., Norman, N., Pickett, N., Robins, E., Nguyen, P.: Bis-catecholate, bis-dithiocatecholate, and tetraalkoxydiborane(4) compounds: aspects of synthesis and electronic structure. Inorg. Chem. 37, 5282–5288 (1998)CrossRefGoogle Scholar
  132. 132.
    Cragg, R.H., Husband, J.P.N., Weston, A.F.: Boron-sulphur compounds - V[1]: reaction of lead thiolates with chloroboranes. J. Inorg. Nucl. Chem. 35, 3685–3689 (1973)CrossRefGoogle Scholar
  133. 133.
    Ito, M., Tokitoh, N., Okazaki, R.: Synthesis and structures of novel dithiaboretanes containing a group 4, 14, or 15 element. Organometallics 16, 4314–4319 (1997)CrossRefGoogle Scholar
  134. 134.
    Wang, Y., Li, J., Ren, T.: Tribological study of a novel borate ester containing S, P with high hydrolytic stability as a multifunctional lubricating additive. Tribol. Trans. 51, 160–165 (2008)CrossRefGoogle Scholar
  135. 135.
    Wang, Y., Li, J., Ren, T.: Tribological study of a novel borate ester containing dialkylthiophosphate group as multifunctional additive. Ind. Lubr. Tribol. 61, 33–39 (2009)CrossRefGoogle Scholar
  136. 136.
    Shah, F.U., Glavatskih, S., Antzutkin, O.N.: Synthesis, physicochemical, and tribological characterization of S-di-n-octoxyboron-O, O′-di-n-octyldithiophosphate. ACS Appl. Mater. Interfaces 1, 2835–2842 (2009)CrossRefGoogle Scholar
  137. 137.
    Shah, F.U., Glavatskih, S., Höglund, E., Lindberg, M., Antzutkin, O.N.: Interfacial antiwear and physicochemical properties of alkylborate-dithiophosphates. ACS Appl. Mater. Interfaces 3, 956–968 (2011)CrossRefGoogle Scholar
  138. 138.
    Viesca, J.L., Battez, A.H., González, R., Reddyhoff, T., Pérez, A.T., Spikes, H.A.: Assessing boundary film formation of lubricant additivised with 1-hexyl-3-methylimidazolium tetrafluoroborate using ECR as qualitative indicator. Wear 269, 112–117 (2010)CrossRefGoogle Scholar
  139. 139.
    Mu, Z., Zhou, F., Zhang, S., Liang, Y., Liu, W.: Effect of the functional groups in ionic liquid molecules on the friction and wear behavior of aluminum alloy in lubricated aluminum-on-steel contact. Tribol. Int. 38, 725–731 (2005)CrossRefGoogle Scholar
  140. 140.
    Seddon, K.: Ionic liquids: designer solvents for green synthesis. Chem. Eng. 730, 33–35 (2002)Google Scholar
  141. 141.
    Welton, T.: Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2083 (1999)CrossRefGoogle Scholar
  142. 142.
    MacFarlane, D.R., Pringle, J.M., Howlett, P.C., Forsyth, M.: Ionic liquids and reactions at the electrochemical interface. Phys. Chem. Chem. Phys. 12, 1659–1669 (2010)CrossRefGoogle Scholar
  143. 143.
    Petkovic, M., Seddon, K., Pereira, C.: Ionic liquids: a pathway to environmental acceptability. Chem. Soc. Rev. 40, 1383–1403 (2011)CrossRefGoogle Scholar
  144. 144.
    Ranke, J., Stolte, S., Stoermann, R., Arning, J., Jastorff, B.: Design of sustainable chemical products: the example of ionic liquids. Chem. Rev. 107, 2183–2206 (2007)CrossRefGoogle Scholar
  145. 145.
    Walden, P.: Molecular weights and electrical conductivity of several fused salts. Bull. Acad. Impér. Sci. St. Petersbourg 8, 405 (1914)Google Scholar
  146. 146.
    Wilkes, J.S., Levisky, J.A., Wilson, R.A., Hussey, C.L.: Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy, and synthesis. Inorg. Chem. 21, 1263–1264 (1982)CrossRefGoogle Scholar
  147. 147.
    Fannin Jr, A.A., Floreani, D.A., King, L.A., Landers, J.S., Piersma, B.J., Stech, D.J., Vaughn, R.L., Wilkes, J.S., Williams, J.L.: Properties of 1,3-dialkylimidazolium chloride-aluminum chloride ionic liquids. 2. Phase transitions, densities, electrical conductivities, and viscosities. J. Phys. Chem. 88, 2614–2621 (1984)CrossRefGoogle Scholar
  148. 148.
    Fannin Jr, A.A., King, L.A., Levisky, J.A., Wilkes, J.S.: Properties of 1,3-dialkylimidazolium chloride-aluminum chloride ionic liquids. 1. Ion interactions by nuclear magnetic resonance spectroscopy. J. Phys. Chem. 88, 2609–2614 (1984)CrossRefGoogle Scholar
  149. 149.
    Hallett, J., Welton, T.: Room-temperature ionic liquids: solvents for synthesis and catalysis. Chem. Rev. 111, 3508–3576 (2011)CrossRefGoogle Scholar
  150. 150.
    Plechkova, N., Seddon, K.: Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 37, 123–150 (2008)CrossRefGoogle Scholar
  151. 151.
    Bermudez, M., Jimenez, A., Sanes, J., Carrion, F.: Ionic liquids as advanced lubricant fluids. Molecules 14, 2888–2908 (2009)CrossRefGoogle Scholar
  152. 152.
    Palacio, M., Bhushan, B.: A review of ionic liquids for green molecular lubrication in nanotechnology. Tribol. Lett. 40, 247–268 (2010)CrossRefGoogle Scholar
  153. 153.
    Minami, I.: Ionic liquids in tribology. Molecules 14, 2286–2305 (2009)CrossRefGoogle Scholar
  154. 154.
    Zhou, F., Liang, Y., Liu, W.: Ionic liquid lubricants: designed chemistry for engineering applications. Chem. Soc. Rev. 38, 2590–2599 (2009)CrossRefGoogle Scholar
  155. 155.
    Somers, A.E., Howlett, P.C., MacFarlane, D.R., Forsyth, M.: A review of ionic liquid lubricants. Lubricants 1, 3–21 (2013)CrossRefGoogle Scholar
  156. 156.
    Ye, C., Liu, W., Chen, Y., Yu, L.: Room-temperature ionic liquids: a novel versatile lubricant. Chem. Comm. 21, 2244–2245 (2001)CrossRefGoogle Scholar
  157. 157.
    Liu, W., Ye, C., Gong, Q., Wang, H., Wang, P.: Tribological performance of room-temperature ionic liquids as lubricant. Tribol. Lett. 13, 81–85 (2002)CrossRefGoogle Scholar
  158. 158.
    Lu, Q., Wang, H., Ye, C., Liu, W., Xue, Q.: Room temperature ionic liquid 1-ethyl-3-hexylimidazolium- bis(trifluoromethylsulfonyl)-imide as lubricant for steel-steel contact. Tribol. Int. 37, 547–552 (2004)CrossRefGoogle Scholar
  159. 159.
    Mu, Z., Liu, W., Zhang, S., Zhou, F.: Functional room-temperature ionic liquids as lubricants for an aluminum-on-steel system. Chem. Lett. 33, 524–525 (2004)CrossRefGoogle Scholar
  160. 160.
    Wang, H., Lu, Q., Ye, C., Liu, W., Cui, Z.: Friction and wear behaviors of ionic liquid of alkylimidazolium hexafluorophosphates as lubricants for steel/steel contact. Wear 256, 44–48 (2004)CrossRefGoogle Scholar
  161. 161.
    Zhang, Q., Li, Z., Zhang, J., Zhang, S., Zhu, L., Yang, J., Zhang, X., Deng, Y.: Physicochemical properties of nitrile-functionalized ionic liquids. J. Phys. Chem. B 111, 2864–2872 (2007)CrossRefGoogle Scholar
  162. 162.
    Arora, H., Cann, P.M.: Lubricant film formation properties of alkyl imidazolium tetrafluoroborate and hexafluorophosphate ionic liquids. Tribol. Int. 43, 1908–1916 (2010)CrossRefGoogle Scholar
  163. 163.
    Jiménez, A.E., Bermúdez, M.D.: Ionic liquids as lubricants of titanium-steel contact. Part 2: friction, wear and surface interactions at high temperature. Tribol. Lett. 37, 431–443 (2010)CrossRefGoogle Scholar
  164. 164.
    Liu, X., Zhou, F., Liang, Y., Liu, W.: Tribological performance of phosphonium based ionic liquids for an aluminum-on-steel system and opinions on lubrication mechanism. Wear 261, 1174–1179 (2006)CrossRefGoogle Scholar
  165. 165.
    Weng, L.J., Liu, X.Q., Liang, Y.M., Xue, Q.J.: Effect of tetraalkylphosphonium based ionic liquids as lubricants on the tribological performance of a steel-on-steel system. Tribol. Lett. 26, 11–17 (2007)CrossRefGoogle Scholar
  166. 166.
    Klaver, T.P.C., Luppi, M., Sluiter, M.H.F., Kroon, M.C., Thijsse, B.J.: DFT study of 1,3-dimethylimidazolium tetrafluoroborate on Al and Cu(111) surfaces. J. Phys. Chem. C 115, 14718–14730 (2011)CrossRefGoogle Scholar
  167. 167.
    Valencia, H., Kohyama, M., Tanaka, S., Matsumoto, H.: Ab initio study of EMIM-BF4 molecule adsorption on Li surfaces as a model for ionic liquid/Li interfaces in Li-ion batteries. Phys. Rev. B 78, 205402 (2008)CrossRefGoogle Scholar
  168. 168.
    Minami, I., Inada, T., Okada, Y.: Tribological properties of halogen-free ionic liquids. Proc. Inst. Mech. Eng. J. J. Eng. Tribol. 226, 891–902 (2012)CrossRefGoogle Scholar
  169. 169.
    Shah, F.U., Glavatskih, S., MacFarlane, D.R., Somers, A., Forsyth, M., Antzutkin, O.N.: Novel halogen-free chelated orthoborate-phosphonium ionic liquids: synthesis and tribophysical properties. Phys. Chem. Chem. Phys. 13, 12865–12873 (2011)CrossRefGoogle Scholar
  170. 170.
    Phillips, B.S., Zabinski, J.S.: Ionic liquid lubrication effects on ceramics in a water environment. Tribol. Lett. 17, 533–541 (2004)CrossRefGoogle Scholar
  171. 171.
    Omotowa, B.A., Phillips, B.S., Zabinski, J.S., Shreeve, J.M.: Phosphazene-based ionic liquids: synthesis, temperature-dependent viscosity, and effect as additives in water lubrication of silicon nitride ceramics. Inorg. Chem. 43, 5466–5471 (2004)CrossRefGoogle Scholar
  172. 172.
    Chandrasekhar, V., Nagendran, S.: Phosphazenes as scaffolds for the construction of multi-site coordination ligands. Chem. Soc. Rev. 30, 193–203 (2001)CrossRefGoogle Scholar
  173. 173.
    Jiménez, A.E., Bermúdez, M.D., Carrión, F.J., Martínez-Nicolás, G.: Room temperature ionic liquids as lubricant additives in steel-aluminium contacts: influence of sliding velocity, normal load and temperature. Wear 261, 347–359 (2006)CrossRefGoogle Scholar
  174. 174.
    Battez, A.H., González, R., Viesca, J.L., Blanco, D., Asedegbega, E., Osorio, A.: Tribological behaviour of two imidazolium ionic liquids as lubricant additives for steel/steel contacts. Wear 266, 1224–1228 (2009)CrossRefGoogle Scholar
  175. 175.
    Cai, M., Liang, Y., Yao, M., Xia, Y., Zhou, F., Liu, W.: Imidazolium ionic liquids as antiwear and antioxidant additive in poly(ethylene glycol) for steel/steel contacts. ACS Appl. Mater. Interf. 2, 870–876 (2010)CrossRefGoogle Scholar
  176. 176.
    Yao, M., Liang, Y., Xia, Y., Zhou, F.: Bisimidazolium ionic liquids as the high-performance antiwear additives in poly(ethylene glycol) for steel-steel contacts. ACS Appl. Mater. Interf. 1, 467–471 (2009)CrossRefGoogle Scholar
  177. 177.
    Zhao, Q.: Tribological behavior of protic ionic liquids with dodecylamine salts of dialkyldithiocarbamate as additives in lithium complex grease. Tribol. Lett. 48, 133–144 (2012)CrossRefGoogle Scholar
  178. 178.
    Fox, M.F., Priest, M.: Tribological properties of ionic liquids as lubricants and additives. Part 1: synergistic tribofilm formation between ionic liquids and tricresyl phosphate. Proc. Inst. Mech. Eng. Part J 222, 291–303 (2008)Google Scholar
  179. 179.
    Cai, M., Zhao, Z., Liang, Y., Zhou, F., Liu, W.: Alkyl imidazolium ionic liquids as friction reduction and anti-wear additive in polyurea grease for steel/steel contacts. Tribol. Lett. 40, 215–224 (2010)CrossRefGoogle Scholar
  180. 180.
    Cai, M., Liang, Y., Zhou, F., Liu, W.: Tribological properties of novel imidazolium ionic liquids bearing benzotriazole group as the antiwear/anticorrosion additive in poly(ethyleneglycol) and polyurea grease for steel/steel contacts. ACS Appl. Mater. Interf. 3, 4580–4592 (2011)CrossRefGoogle Scholar
  181. 181.
    Wang, Z., Xia, Y., Liu, Z., Wen, Z.: Conductive lubricating grease synthesized using the ionic liquid. Tribol. Lett. 46, 33–42 (2012)CrossRefGoogle Scholar
  182. 182.
    Wang, Z., Xia, Y., Liu, Z.: Comparative study of the tribological properties of ionic liquids as additives of the attapulgite and bentone greases. Lubr. Sci. 24, 174–187 (2012)CrossRefGoogle Scholar
  183. 183.
    Samuel, S., Nag, S., Scharf, T.W., Banerjee, R.: Wear resistance of laser-deposited boride reinforced Ti-Nb-Zr-Ta alloy composites for orthopedic implants. Mater. Sci. Eng. C 28, 414–420 (2008)CrossRefGoogle Scholar
  184. 184.
    Majumdar, P., Singh, S.B., Chakraborty, M.: The influence of heat treatment and role of boron on sliding wear behaviour of β-type Ti-35Nb-7.2Zr-5.7Ta alloy in dry condition and in simulated body fluids. J. Mech. Behav. Biomed. Mater. 4, 284–297 (2011)CrossRefGoogle Scholar
  185. 185.
    Anabtawi, M., Beck, P., Lemons, J.: Biocompatibility testing of simulated total joint arthoplasty articulation debris. J. Biomed. Mater. Res. Part B Appl. Biomater. 84B, 478–485 (2008)CrossRefGoogle Scholar
  186. 186.
    Klepper, C.C., Williams, J.M., Truhan, J.J., Qu, J., Riester, L.: Tribo-mechanical properties of thin boron coatings deposited on polished cobalt alloy surfaces for orthopedic applications. Thin Solid Films 516, 3070–3080 (2008)CrossRefGoogle Scholar
  187. 187.
    Pawlak, Z., Pai, R., Bayraktar, E., Kaldonski, T., Oloyede, A.: Lamellar lubrication in vivo and vitro: friction testing of hexagonal boron nitride. BioSystems 94, 202–208 (2008)CrossRefGoogle Scholar
  188. 188.
    Lahiri, D., Rouzaud, F., Richard, T., Keshri, A., Bakshi, S.: Boron nitride nanotube reinforced polylactide-polycaprolactone copolymer composite: mechanical properties and cytocompatibility with osteoblasts and macrophages in vitro. Acta Biomater. 6, 3524–3533 (2010)CrossRefGoogle Scholar
  189. 189.
    Lahiri, D., Singh, V., Benaduce, A., Seal, S., Kos, L.: Boron nitride nanotube reinforced hydroxyapatite composite: mechanical and tribological performance and in vitro biocompatibility to osteoblasts. J. Mech. Behav. Biomed. Mater. 4, 44–56 (2011)CrossRefGoogle Scholar
  190. 190.
    Brown, P., Bellaloui, N., Wimmer, M., Bassil, E., Ruiz, J.: Boron in plant biology. Plant Biol. 4, 205–223 (2002)CrossRefGoogle Scholar
  191. 191.
    Takano, J., Miwa, K., Fujiwara, T.: Boron transport mechanisms: collaboration of channels and transporters. Trends Plant Sci. 13, 451–457 (2008)CrossRefGoogle Scholar
  192. 192.
    Takeda, S., Matsuoka, M.: Genetic approaches to crop improvement: responding to environmental and population changes. Nat. Rev. Genet. 9, 444–457 (2008)CrossRefGoogle Scholar
  193. 193.
    Hunt, C.: Dietary boron: an overview of the evidence for its role in immune function. J. Tr. Elem. Exp. Med. 16, 291–306 (2003)CrossRefGoogle Scholar
  194. 194.
    Fort, D., Stover, E., Strong, P., Murray, F., Keen, C.: Chronic feeding of a low boron diet adversely affects reproduction and development in Xenopus laevis. J. Nutr. 129, 2055–2060 (1999)Google Scholar
  195. 195.
    Bai, Y., Hunt, C.: Dietary boron enhances efficacy of cholecalciferol in broiler chicks. J. Tr. Elem. Exp. Med. 9, 117–132 (1996)CrossRefGoogle Scholar
  196. 196.
    Hilal, N., Kim, G.J., Somerfield, C.: Boron removal from saline water: a comprehensive review. Desalination 273, 23–35 (2011)CrossRefGoogle Scholar
  197. 197.
    Fail, P.A., Chapin, R.E., Price, C.J., Heindel, J.J.: General, reproductive, developmental, and endocrine toxicity of boronated compounds. Reprod. Toxicol. 12, 1–18 (1998)CrossRefGoogle Scholar
  198. 198.
    Issa, F., Kassiou, M., Rendina, L.M.: Boron in drug discovery: carboranes as unique pharmacophores in biologically active compounds. Chem. Rev. 111, 5701–5722 (2011)CrossRefGoogle Scholar
  199. 199.
    Baker, S.J., Ding, C.Z., Akama, T., Zhang, Y., Hernandez, V., Xia, Y.: Therapeutic potential of boron-containing compounds. Future Med. Chem. 1, 1275–1288 (2009)CrossRefGoogle Scholar
  200. 200.
    Sayli, B.S., Tuccar, E., Elhan, A.H.: An assessment of fertility in boron-exposed Turkish subpopulations. Rep. Toxicol. 12, 297–304 (1998)CrossRefGoogle Scholar
  201. 201.
    Duydu, Y., Basaran, N., Ustundag, A., Aydan, S., Undeger, U.: Reproductive toxicity parameters and biological monitoring in occupationally and environmentally boron-exposed persons in Bandarma, Turkey. Arch. Toxicol. 85, 589–600 (2011)CrossRefGoogle Scholar
  202. 202.
    Chen, X., Wu, P., Rousseas, M., Okawa, D., Gartner, Z.: Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. J. Am. Chem. Soc. 131, 890 (2009)CrossRefGoogle Scholar
  203. 203.
    Ciofani, G., Raffa, V., Menciassi, A., Cuschieri, A.: Cytocompatibility, interactions, and uptake of polyethyleneimine-coated boron nitride nanotubes by living cells: confirmation of their potential for biomedical applications. Biotechnol. Bioeng. 101, 850–858 (2008)CrossRefGoogle Scholar
  204. 204.
    Glavatskih, S.: Tribotronics—monitoring based active friction control. In: Wang, Q., Chung, Y. (eds.) Encyclopedia of Tribology. Springer-Verlag, Berlin, Heidelberg (2013)Google Scholar
  205. 205.
    Sweeney, J., Hausen, F., Hayes, R., Webber, G.B., Endres, F., Rutland, M.W., Bennewitz, R., Atkin, R.: Control of nanoscale friction on gold in an ionic liquid by a potential-dependent ionic lubricant layer. Phys. Rev. Lett. 109, 155502–155505 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Faiz Ullah Shah
    • 1
    Email author
  • Sergei Glavatskih
    • 2
    • 3
  • Oleg N. Antzutkin
    • 1
    • 4
  1. 1.Chemistry of InterfacesLuleå University of TechnologyLuleåSweden
  2. 2.Machine DesignKTH Royal Institute of TechnologyStockholmSweden
  3. 3.Department of Mechanical Construction and ProductionGhent UniversityGhentBelgium
  4. 4.Department of PhysicsUniversity of WarwickCoventryUK

Personalised recommendations