Tribology Letters

, Volume 51, Issue 3, pp 377–383 | Cite as

Preliminary Friction Force Measurements on Small Bowel Lumen When Eliminating Sled Edge Effects

  • Allison B. Lyle
  • Benjamin S. Terry
  • Jonathan A. Schoen
  • Mark E. Rentschler
Original Paper


This study aims to produce experimental results for the coefficient of friction (COF) between the small bowel lumen and an edgeless, translating sled. Friction was measured as a function of sled speed under in situ and in vitro conditions. The results indicate that by eliminating edge effects, the COF between a stainless steel sled and the inner surface of the small bowel lumen is decreased. The average COF for in situ testing was found to be slightly lower than in vitro tests. Friction increased with increasing velocity. The friction forces ranged from 0.013 to 0.08 N, and COF values ranged from 0.007 to 0.054 under these conditions.


Small bowel Tribology Friction Capsule endoscopy 


  1. 1.
    McGee, M.F., Rosen, M.J., Marks, J., Onders, R.P., Chak, A., Faulx, A., Chen, V.K., Ponsky, J.: A primer on natural orifice transluminal endoscopic surgery: building a new paradigm. Surg. Innov. 13, 86–93 (2006)CrossRefGoogle Scholar
  2. 2.
    Phee, L., Accoto, D., Menciassi, A., Stefanini, C., Carrozza, M., Dario, P.: Analysis and development of locomotion devices for the gastrointestinal tract. IEEE Trans. Biomed. Eng. 49, 613–616 (2002)CrossRefGoogle Scholar
  3. 3.
    Swain, P.: The future of wireless capsule endoscopy. World J. Gastroenterol. 14, 4142 (2008)CrossRefGoogle Scholar
  4. 4.
    Sliker, L.J., Kern, M.D., Schoen, J.A., Rentschler, M.E.: Surgical evaluation of a novel tethered robotic capsule endoscope using micro-patterned treads. Surg. Endosc. 26, 2862–2869 (2012)CrossRefGoogle Scholar
  5. 5.
    Gregersen, H., Kassab, G.S.: Biomechanics of the Gastrointestinal Tract: New Perspectives in Motility Research and Diagnostics. Springer, London (2003)CrossRefGoogle Scholar
  6. 6.
    Olsson, H., Astrom, K., de Wit, C., Gafvert, M., Lischinsky, P.: Friction models and friction compensation. Eur. J. Control. 4, 176–195 (1998)CrossRefGoogle Scholar
  7. 7.
    Grosch, K.A.: The relation between the friction and visco-elastic properties of rubber. Proc. R. Soc. Lond. A 274, 21–39 (1963)CrossRefGoogle Scholar
  8. 8.
    Ludema, K.C., Tabor, D.: The friction and viscoelastic properties of polymeric solids. Rubber Chem. Technol. 41, 329–348 (1966)Google Scholar
  9. 9.
    Bahadur, S., Ludema, K.: The viscoelastic nature of the sliding friction of polypropylene and copolymers. Wear 18, 109–128 (1971)CrossRefGoogle Scholar
  10. 10.
    Yamaguchi, T., Ohmata, S., Doi, M.: Regular to chaotic transition of stick-slip motion in sliding friction of an adhesive gel sheet. J. Phys.: Condens. Matter, 21, 1–7 (2009)CrossRefGoogle Scholar
  11. 11.
    Ringlein, J., Robbins, M.O.: Understanding and illustrating the atomic origins of friction. Am. J. Phys. 2, 884 (2004)CrossRefGoogle Scholar
  12. 12.
    Gong, J.P., Osada, Y.: Surface friction of polymer gels. Prog. Polym. Sci. 27, 3–38 (2002)CrossRefGoogle Scholar
  13. 13.
    Atuma, C., Strugala, V., Allen, A., Holm, L.: The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am. J. Physiol. Gastrointest. Liver Physiol. 280, 922–929 (2001)Google Scholar
  14. 14.
    Lai, S.K., Wang, Y.-Y., Wirtz, D., Hanes, J.: Micro- and macrorheology of mucus. Adv. Drug Deliv. Rev. 61, 86–100 (2009)CrossRefGoogle Scholar
  15. 15.
    Baek, N., Sung, I., Kim, D.: Frictional resistance characteristics of a capsule inside the intestine for microendoscope design. Proc. Inst. Mech. Eng. [H] 218, 193–201 (2004)CrossRefGoogle Scholar
  16. 16.
    Kwon, J., Park, S., Kim, B., Park, J.: Bio-material property measurement system for locomotive mechanism in gastro-intestinal tract. In: Proceedings of the 2005 IEEE: International Conference on Robotics and Automation. pp. 1315–1320 (2005)Google Scholar
  17. 17.
    Kim, J., Sung, I., Kim, Y., Kwon, E., Kim, D., Jang, Y.H.: Experimental investigation of frictional and viscoelastic properties of intestine for microendoscope application. Tribol. Lett. 22, 143–149 (2006)CrossRefGoogle Scholar
  18. 18.
    Kim, Y.T., Kim, D.E., Park, S.H., Yoon, E.S.: Frictional behavior of solid and hollow cylinders in contact against a porcine intestine specimen. KSTLE Int. J. 7, 51–55 (2006)Google Scholar
  19. 19.
    Kim, Y., Kim, D.: Biotribological investigation of a multi-tube foot for traction generation in a medical microrobot. J. Eng. Med. 223, 677–686 (2009)CrossRefGoogle Scholar
  20. 20.
    Wang, K.D., Yan, G.: Research on measurement and modeling of the gastro intestine’s frictional characteristics. Meas. Sci. Technol. 20, 1–6 (2009)Google Scholar
  21. 21.
    Wang, X., Meng, M.Q.-H.: An experimental study of resistant properties of the small intestine for an active capsule endoscope. Proc. Inst. Mech. Eng. H. 224, 107–118 (2010)Google Scholar
  22. 22.
    Terry, B.S., Lyle, A.B., Schoen, J.A., Rentschler, M.E.: Preliminary mechanical characterization of the small bowel for in vivo robotic mobility. J. Biomech. Eng. 133, 091010 (2011)CrossRefGoogle Scholar
  23. 23.
    Yoshida, H., Morita, Y., Ikeuchi, K.: Biological lubrication of hydrated surface layer in small intestine. Tribol. Interface Eng. Ser.: Tribol. Res. Des. Eng. Syst. 41, 425–428 (2003)Google Scholar
  24. 24.
    Accoto, D., Stefanini, C., Phee, L.: Measurement of the frictional properties of the GI tract. In: Proceedings of the 2nd International Conference on Tribology. 1, 153–158 (2001)Google Scholar
  25. 25.
    Bistac, S., Schmitt, M., Ghorbal, A.: Sliding Friction of Polymers: The Complex Role of Interface. Fundamentals of Friction and Wear: Nanoscience and Technology. pp. 647–658 (2007)Google Scholar
  26. 26.
    Sanchez, N.C., Tenofsky, P.L., Dort, J.M., Shen, L.Y., Helmer, S.D., Smith, R.S.: What is normal intra-abdominal pressure? Am. Surg. 67, 243–248 (2001)Google Scholar
  27. 27.
    Terry, B.S., Passernig, A.C., Hill, M., Schoen, J.A., Rentschler, M.E.: Small Intestine mucosal adhesivity to In vivo capsule robot materials. J. Mech. Behav. Biomed. Mater. 15, 24–32 (2012)CrossRefGoogle Scholar
  28. 28.
    Terry, B.S., Schoen, J.A., Rentschler, M.E.: Measurements of the contact force from myenteric contractions on a solid bolus. J. Robotic Surg. (Epub), doi: 10.1007/s11701-012-0346-3 (2012)
  29. 29.
    Terry, B.S., Schoen, J.A., Rentschler, M.E.: Characterization and experimental results of a novel sensor for measuring the contact force from myenteric contractions. IEEE Trans. Biomed. Eng. 59, 1971–1977 (2012)CrossRefGoogle Scholar
  30. 30.
    Lyle, A.B., Luftig, J.T., Rentschler, M.E.: A tribological investigation of the small bowel surface. Tribol. Int. 62, 171–176 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Allison B. Lyle
    • 1
  • Benjamin S. Terry
    • 1
  • Jonathan A. Schoen
    • 2
  • Mark E. Rentschler
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of ColoradoBoulderUSA
  2. 2.Department of SurgeryUniversity of ColoradoAuroraUSA

Personalised recommendations