Tribology Letters

, Volume 51, Issue 3, pp 311–321 | Cite as

Friction Properties of Medical Metallic Alloys on Soft Tissue–Mimicking Poly(Vinyl Alcohol) Hydrogel Biomodel

  • Hiroyuki KosukegawaEmail author
  • Vincent Fridrici
  • Philippe Kapsa
  • Yuji Sutou
  • Koshi Adachi
  • Makoto Ohta
Original Paper


In order to investigate the tribological behavior of medical devices in contact with tissue, friction tests for four kinds of medical metallic alloys (316L stainless steel, CoCr, NiTi and TiMoSn) on soft tissue–mimicking poly(vinyl alcohol) hydrogel (PVA-H) biomodel were carried out at low normal load. XPS analysis and wettability tests for them were prepared to understand the difference in friction. According to the surface oxide compositions, these alloys can be divided into two groups: “Fe/Cr-oxide-surface alloys” for 316L and CoCr, and “Ti-oxide-surface alloys” for NiTi and TiMoSn. From the wettability test, Fe/Cr-oxide-surface alloys show lower polar components of surface free energy than Ti-oxide-surface alloys. Fe/Cr-oxide-surface alloys show higher friction coefficients in the elastic friction domain than those of Ti-oxide-surface alloys, while there was no significant difference in the hydrodynamic lubrication. Since elastic friction is governed by the adsorption of hydrogel polymer on counterbody, the surface characteristic of alloys plays an important role in friction. A tentative explanation for this tendency is expressed by linking two different theories describing the adsorption force of hydrogel and wettability of countermaterial.


Biointerface Biotribology Poly(vinyl alcohol) hydrogel Medical alloy Surface free energy Elastic friction 



The authors express our gratitude to Mr. Thierry Le Mogne of École Centrale de Lyon for his great help and advice for XPS analysis. Many thanks are also due to Dr. Boyko Stoimenov and Mr. Gaëtan Bouvard in École Centrale de Lyon for their helpful discussion. In addition, this work was financially supported by the Japan Society for the Promotion of Science (JSPS) and its program named “Core-to-Core Project No. 20001,” International Advanced Research and Education Organization (IAREO) of Tohoku University, Tohoku University Global COE program “World Center of Education and Research for Trans-disciplinary Flow Dynamics,” the French Government Scholarship “Promotion 2011 François Léonce Verny,” and the International Associated Laboratory (LIA CNRS) “Engineering and Science Lyon Tohoku Laboratory (ELyT).”


  1. 1.
    Keaveny, T.M., Bartel, D.L.: Effects of porous coating and collar support on early load-transfer for a cementless hip-prosthesis. J. Biomech. 26(10), 1205–1216 (1993)CrossRefGoogle Scholar
  2. 2.
    Rubin, P.J., Rakotomanana, R.L., Leyvraz, P.F., Zysset, P.K., Curnier, A., Heegaard, J.H.: Frictional interface micromotions and anisotropic stress-distribution in a femoral total hip component. J. Biomech. 26(6), 725–739 (1993)CrossRefGoogle Scholar
  3. 3.
    Patel, A.M., Spector, M.: Tribological evaluation of oxidized zirconium using an articular cartilage counterface: a novel material for potential use in hemiarthroplasty. Biomaterials 18(5), 441–447 (1997)CrossRefGoogle Scholar
  4. 4.
    Sathasivam, S., Walker, P.S.: A computer model with surface friction for the prediction of total knee kinematics. J. Biomech. 30(2), 177–184 (1997)CrossRefGoogle Scholar
  5. 5.
    Zhou, Y.S., Ikeuchi, K., Ohashi, M.: Comparison of the friction properties of four ceramic materials for joint replacements. Wear 210(1–2), 171–177 (1997)CrossRefGoogle Scholar
  6. 6.
    Takashima, K., Kitou, T., Mori, K., Ikeuchi, K.: Simulation and experimental observation of contact conditions between stents and artery models. Med. Eng. Phys. 29(3), 326–335 (2007)CrossRefGoogle Scholar
  7. 7.
    Ohta, M., Handa, A., Iwata, H.: Poly-vinyl alcohol hydrogel vascular models for in vitro aneurysm simulations: the key to low friction surfaces. Technol. Health Care 12, 225–233 (2004)Google Scholar
  8. 8.
    Brusseau, E., Fromageau, J., Finet, G., Delachartre, P., Vray, D.: Axial strain imaging of intravascular data: results on polyvinyl alcohol cryogel phantoms and carotid artery. Ultrasound Med. Biol. 27(12), 1631–1642 (2001)CrossRefGoogle Scholar
  9. 9.
    Fromageau, J., Brusseau, E., Vray, D., Gimenez, G., Delachartre, P.: Characterization of PVA cryogel for intravascular ultrasound elasticity imaging. IEEE T. Ultrason. Ferrelectr. 50(10), 1318–1324 (2003)CrossRefGoogle Scholar
  10. 10.
    Wetzel, S.G., Ohta, M., Handa, A., Auer, J.M., Lylyk, P., Lovblad, K.O., Babic, D., Rufenacht, D.A.: From patient to model: stereolithographic modeling of the cerebral vasculature based on rotational angiography. Am. J. Neuroradiol. 26(6), 1425–1427 (2005)Google Scholar
  11. 11.
    Millon, L.E., Mohammadi, H., Wan, W.K.: Anisotropic polyvinyl alcohol hydrogel for cardiovascular applications. J. Biomed. Mater. Res A. 79B(2), 305–311 (2006)CrossRefGoogle Scholar
  12. 12.
    Millon, L.E., Nieh, M.P., Hutter, J.L., Wan, W.K.: SANS characterization of an anisotropic poly(vinyl alcohol) hydrogel with vascular applications. Macromolecules 40(10), 3655–3662 (2007)CrossRefGoogle Scholar
  13. 13.
    Kosukegawa, H., Mamada, K., Liu, L., Inoue, K., Kuroki, K., Hayase, T., Ohta, M.: Measurements of dynamic viscoelasticity of poly(vinyl alcohol) hydrogel for the development of blood vessel biomodeling. J. Fluid Sci. Technol. 3(4), 533–543 (2008)CrossRefGoogle Scholar
  14. 14.
    Liu, L., Kosukegawa, H., Ohta, M., Hayase, T.: Anisotropic in vitro vessel model using poly(vinyl alcohol) hydro gel and mesh material. J. Appl. Polym. Sci. 116(4), 2242–2250 (2010)Google Scholar
  15. 15.
    Kosukegawa, H., Shida, S., Hashida, Y., Ohta, M.: Mechanical properties of tube-shaped poly(vinyl alcohol) hydrogel blood vessel biomodel. In: Proceedings of the ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting and 8th International Conference on Nanochannels, Microchannels, and Minichannels FEDSM-ICNMM2010(30892), 1–7 (2010)Google Scholar
  16. 16.
    Wan, W.K., Campbell, G., Zhang, Z.F., Hui, A.J., Boughner, D.R.: Optimizing the tensile properties of polyvinyl alcohol hydrogel for the construction of a bioprosthetic heart valve stent. J. Biomed. Mater. Res. 63(6), 854–861 (2002)CrossRefGoogle Scholar
  17. 17.
    Surry, K.J.M., Austin, H.J.B., Fenster, A., Peters, T.M.: Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging. Phys. Med. Biol. 49(24), 5529–5546 (2004)CrossRefGoogle Scholar
  18. 18.
    Pan, Y.S., Xiong, D.S., Ma, R.Y.: A study on the friction properties of poly(vinyl alcohol) hydrogel as articular cartilage against titanium alloy. Wear 262(7–8), 1021–1025 (2007)CrossRefGoogle Scholar
  19. 19.
    Ma, R.Y., Xiong, D.S., Miao, F., Zhang, J.F., Peng, Y.: Friction properties of novel PVP/PVA blend hydrogels as artificial cartilage. J. Biomed. Mater. Res., Part A 93A(3), 1016–1019 (2010)Google Scholar
  20. 20.
    Mamada, K., Kosukegawa, H., Fridrici, V., Kapsa, P., Ohta, M.: Friction properties of PVA-H/steel ball contact under water lubrication conditions. Tribol. Int. 44(7–8), 757–763 (2011)CrossRefGoogle Scholar
  21. 21.
    Mamada, K., Fridrici, V., Kosukegawa, H., Kapsa, P., Ohta, M.: Friction properties of poly(vinyl alcohol) hydrogel: effects of degree of polymerization and saponification value. Tribol. Lett. 42, 241–251 (2011)CrossRefGoogle Scholar
  22. 22.
    Gong, J., Osada, Y.: Gel friction: a model based on surface repulsion and adsorption. J. Chem. Phys. 109(18), 8062–8068 (1998)CrossRefGoogle Scholar
  23. 23.
    Kagata, G., Gong, J.P., Osada, Y.: Friction of gels. 6. Effects of sliding velocity and viscoelastic responses of the network. J. Phys. Chem. B 106(18), 4596–4601 (2002)CrossRefGoogle Scholar
  24. 24.
    Kurokawa, T., Tominaga, T., Katsuyama, Y., Kuwabara, R., Furukawa, H., Osada, Y., Gong, J.P.: Elastic-hydrodynamic transition of gel friction. Langmuir 21(19), 8643–8648 (2005)CrossRefGoogle Scholar
  25. 25.
    Gong, J.P.: Friction and lubrication of hydrogels—its richness and complexity. Soft Matter 2(7), 544–552 (2006)CrossRefGoogle Scholar
  26. 26.
    de Gennes, P.G.: Scaling concept in polymer physics. Cornell University Press, Ithaca and London (1979)Google Scholar
  27. 27.
    Hermawan, H., Ramdan, D., Djuansjah, J.R.P.: Metals for biomedical applications. In: Fazel, R. (ed.) Biomedical Engineering—From Theory to Applications, pp. 411–430. InTech, Croatia (2011)Google Scholar
  28. 28.
    Clarke, I.C., Manley, M.T., Implant Wear Symposium Engn, W: How do alternative bearing surfaces influence wear behavior? J. Am. Acad. Orth Surg. 16, S86–S93 (2008)Google Scholar
  29. 29.
    Lewis, C.G., Belniak, R.M., Plowman, M.C., Hopfer, S.M., Knight, J.A., Sunderman Jr, F.W.: Intraarticular carcinogenesis bioassays of CoCrMo and TiAlV alloys in rats. J. Arthroplast 10(1), 75–82 (1995)CrossRefGoogle Scholar
  30. 30.
    Machado, L.G., Savi, M.A.: Medical applications of shape memory alloys. Braz. J. Med. Biol. Res. 36(6), 683–691 (2003)CrossRefGoogle Scholar
  31. 31.
    Chida, T., Ida, M., Nakamura, H., Satou, T., Sugimoto, M.: Thermo-structural analysis of backwall in IFMIF lithium target (2). In: JAEA-Technology, vol. 2007-048, pp. 1–40 (2007)Google Scholar
  32. 32.
    Marrey, R.V., Burgermeister, R., Grishaber, R.B., Ritchie, R.O.: Fatigue and life prediction for cobalt-chromium stents: a fracture mechanics analysis. Biomaterials 27(9), 1988–2000 (2006)CrossRefGoogle Scholar
  33. 33.
    Besselink, P.A.: The science and technology of shape memory alloys. Impresrapit, Barcelona (1987)Google Scholar
  34. 34.
    Jackson, C.M., Wagner, H.J., Wasilewski, R.J.: 55-Nitinol- -The alloy with a memory: its physical metallurgy, properties, and applications. In: NASA (ed.) A report. Washington, NASA (1972)Google Scholar
  35. 35.
    Sutou, Y., Yamauchi, K., Takagi, T., Maeshima, T., Nishida, M.: Mechanical properties of Ti-6 at.% Mo-4 at.% Sn alloy wires and their application to medical guidewire. Mat. Sci. Eng. A Struct. 438, 1097–1100 (2006)CrossRefGoogle Scholar
  36. 36.
    Owens, D.K., Wendt, R.C.: Estimation of surface free energy of polymers. J. Appl. Polym. Sci. 13(8), 1741–1747 (1969)CrossRefGoogle Scholar
  37. 37.
    Schallamach, A.: A theory of dynamic rubber friction. Wear 6, 375–382 (1963)CrossRefGoogle Scholar
  38. 38.
    Oshida, Y., Sachdeva, R., Miyazaki, S.: Changes in contact angles as a function of time on some preoxidized biomaterials. J. Mater. Sci.-Mater. Med. 3(4), 306–312 (1992)CrossRefGoogle Scholar
  39. 39.
    Ponsonnet, L., Comte, V., Othmane, A., Lagneau, C., Charbonnier, M., Lissac, M., Jaffrezic, N.: Effect of surface topography and chemistry on adhesion, orientation and growth of fibroblasts on nickel-titanium substrates. Mater. Sci. Eng. C Biomimetic Supramol. Syst. 21(1–2), 157–165 (2002)CrossRefGoogle Scholar
  40. 40.
    Zimmermann, J., Ciacchi, L.C.: Origin of the selective Cr oxidation in CoCr alloy surfaces. J. Phys. Chem. Lett. 1(15), 2343–2348 (2010)CrossRefGoogle Scholar
  41. 41.
    Grosse, A.V.: The relationship between surface tension and energy of liquid metals and their heat of vaporization at the melting point. J. Inorg. Nucl. Chem. 26, 1349–1361 (1964)CrossRefGoogle Scholar
  42. 42.
    Oliver, P.M., Watson, G.W., Kelsey, E.T., Parker, S.C.: Atomistic simulation of the surface structure of the TiO2 polymorphs rutile and anatase. J. Mater. Chem. 7(3), 563–568 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Hiroyuki Kosukegawa
    • 1
    • 2
    Email author
  • Vincent Fridrici
    • 2
  • Philippe Kapsa
    • 2
  • Yuji Sutou
    • 3
  • Koshi Adachi
    • 3
  • Makoto Ohta
    • 1
  1. 1.Institute of Fluid ScienceTohoku UniversitySendaiJapan
  2. 2.Laboratoire de Tribologie et Dynamique des Systèmes, UMR CNRS-ECL-ENISE 5513École Centrale de LyonEcully CedexFrance
  3. 3.Graduate School of EngineeringTohoku UniversitySendaiJapan

Personalised recommendations