Advertisement

Tribology Letters

, Volume 50, Issue 3, pp 387–395 | Cite as

Tribological Properties Mapping: Local Variation in Friction Coefficient and Adhesion

  • Rubén Álvarez-Asencio
  • Jinshan Pan
  • Esben Thormann
  • Mark W. RutlandEmail author
Original Paper

Abstract

Tribological properties mapping is a new technique that extracts friction coefficient and adhesion maps obtained from lateral atomic force microscope (LAFM) images. By imaging the surface systematically as a function of load, a series of images can be tiled, and pixelwise fitted to a modified Amontons’ Law to obtain friction coefficient and adhesion maps. This removes the ambiguity of friction contrast in LAFM imaging which can be a function of the load used for imaging. In ambient laboratory, air and tetradecane, a sample of Vancron®40, commercial powder metallurgical tool alloy containing nitrogen, have been scanned using a standard silicon cantilever in order to obtain tribological data. The tribological properties mapping provides unique information regarding the heterogeneous alloy microstructure as well as shedding light on the tribological behavior of the alloy.

Keywords

Friction AFM Atomic force microscope LFM Lateral atomic force microscope Nanotribology Friction coefficient mapping Adhesion Tool alloy Microstructure 

Notes

Acknowledgments

This project is part of the program “Microstructure, Corrosion and Friction Control” financed by SSF, the Swedish foundation for Strategic Research. We also thank the Swedish Research Council for financial support. Uddeholms AB, Sweden, is acknowledged for supplying the Vancron®40 samples and the microstructure information of the alloy. Useful discussions with Gunnar Dunér and Emily Cranston are gratefully acknowledged.

References

  1. 1.
    Svagan, A.J., Azizi Samir, M.A.S., Berglund, L.A.: Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules 8(8), 2556–2563 (2007)CrossRefGoogle Scholar
  2. 2.
    Thormann, E., Mizuno, H., Jansson, K., Hedin, N., Fernandez, M.S., Arias, J.L., Rutland, M.W., Pai, R.K., Bergstrom, L.: Embedded proteins and sacrificial bonds provide the strong adhesive properties of gastroliths. Nanoscale 4(13), 3910–3916 (2012)CrossRefGoogle Scholar
  3. 3.
    Sababi, M., Ejnermark, S., Andersson, J.r., Claesson, P.M., Pan, J.: Microstructure influence on corrosion behavior of a Fe-Cr-VN tool alloy studied by SEM/EDS, scanning Kelvin force microscopy and electrochemical measurement. Corros. Sci. 66, 153–159 (2013)CrossRefGoogle Scholar
  4. 4.
    Bogdanovic, G., Tiberg, F., Rutland, M.W.: Sliding friction between cellulose and silica surfaces. Langmuir 17(19), 5911–5916 (2001)CrossRefGoogle Scholar
  5. 5.
    Israelachvili, J.: Surface forces and microrheology of molecularly thin liquid films. In: Nhushan, B. (ed.) Handbook of micro/nano tribology. CRC Press, Boca Raton (1995)Google Scholar
  6. 6.
    Derjaguin, B.: Molekulartheorie der äußeren reibung. Zeitschrift für physik a hadrons and nuclei 88(9), 661–675 (1934)Google Scholar
  7. 7.
    Berman, A., Drummond, C., Israelachvili, J.: Amontons’ law at the molecular level. Tribol. Lett. 4(2), 95–101 (1998)CrossRefGoogle Scholar
  8. 8.
    Gao, J., Luedtke, W.D., Gourdon, D., Ruths, M., Israelachvili, J.N., Landman, U.: Frictional forces and Amontons’ law: From the molecular to the macroscopic scale. J. Phys. Chem. B 108(11), 3410–3425 (2004)CrossRefGoogle Scholar
  9. 9.
    Feiler, A.A., Jenkins, P., Rutland, M.W.: Effect of relative humidity on adhesion and frictional properties of micro- and nano-scopic contacts. J. Adhes. Sci. Technol. 19(3–5), 165–179 (2005)CrossRefGoogle Scholar
  10. 10.
    Plunkett, M.A., Feiler, A., Rutland, M.W.: Atomic force microscopy measurements of adsorbed polyelectrolyte layers. 2. Effect of composition and substrate on structure, forces, and friction. Langmuir 19(10), 4180–4187 (2003)CrossRefGoogle Scholar
  11. 11.
    Feiler, A.A., Stiernstedt, J., Theander, K., Jenkins, P., Rutland, M.W.: Effect of capillary condensation on friction force and adhesion. Langmuir 23(2), 517–522 (2006)CrossRefGoogle Scholar
  12. 12.
    Pilkington, G.A., Thormann, E., Claesson, P.M., Fuge, G.M., Fox, O.J.L., Ashfold, M.N.R., Leese, H., Mattia, D., Briscoe, W.H.: Amontonian frictional behaviour of nanostructured surfaces. Phys. Chem. Chem. Phys. 13(20), 9318–9326 (2011)CrossRefGoogle Scholar
  13. 13.
    Thormann, E., Yun, S.H., Claesson, P.M., Linnros, J.: Amontonian friction induced by flexible surface features on microstructured silicon. ACS Appl. Mater. Interfaces 3(9), 3432–3439 (2011)CrossRefGoogle Scholar
  14. 14.
    Yamada, S., Israelachvili, J.: Friction and adhesion hysteresis of fluorocarbon surfactant monolayer-coated surfaces measured with the surface forces apparatus. J. Phys. Chem. B 102(1), 234–244 (1998)CrossRefGoogle Scholar
  15. 15.
    Bowden, F.P., Tabor, D.: Mechanism of metallic friction. Nature 150, 197–199 (1942)CrossRefGoogle Scholar
  16. 16.
    Butt, H.-J.r., Graf, K., Kappl, M.: Physics and chemistry of interfaces, 2nd, rev. and enl. ed. Wiley-VCH, Weinheim (2006)Google Scholar
  17. 17.
    Sasaki, K., Koike, Y., Azehara, H., Hokari, H., Fujihira, M.: Lateral force microscope and phase imaging of patterned thiol self-assembled monolayer using chemically modified tips. Appl. Phys. A 66, 1275–1277 (1998)CrossRefGoogle Scholar
  18. 18.
    Baselt, D.R., Baldeschwieler, J.D.: Lateral forces during atomic force microscopy of graphite in air. J. Vac. Sci. Technol. B 10(5), 2316–2322 (1992)CrossRefGoogle Scholar
  19. 19.
    McMullen, R.L., Kelty, S.P.: Investigation of human hair fibers using lateral force microscopy. Scanning 23(5), 337–345 (2001)CrossRefGoogle Scholar
  20. 20.
    Smith, J.R., Swift, J.A.: Lamellar subcomponents of the cuticular cell membrane complex of mammalian keratin fibres show friction and hardness contrast by AFM. J. Microsc. 206(3), 182–193 (2002)CrossRefGoogle Scholar
  21. 21.
    Sidouni, F.Z., Nurdin, N., Chabrecek, P., Lohmann, D., Vogt, J., Xanthopoulos, N., Mathieu, H.J., Francois, P., Vaudaux, P., Descouts, P.: Surface properties of a specifically modified high-grade medical polyurethane. Surf. Sci. 491(3), 355–369 (2001)CrossRefGoogle Scholar
  22. 22.
    Levi, M.D., Cohen, Y., Cohen, Y., Aurbach, D., Lapkowski, M., Vieil, E., Serose, J.: Atomic force microscopy study of the morphology of polythiophene films grafted onto the surface of a Pt microelectrode array. Synth. Met. 109(1–3), 55–65 (2000)CrossRefGoogle Scholar
  23. 23.
    Ralston, J., Larson, I., Rutland, M.W., Feiler, A.A., Kleijn, M.: Atomic force microscopy and direct surface force measurements—(IUPAC technical report). Pure Appl. Chem. 77(12), 2149–2170 (2005)CrossRefGoogle Scholar
  24. 24.
    Breakspear, S., Smith, J.R., Nevell, T.G., Tsibouklis, J.: Friction coefficient mapping using the atomic force microscope. Surf. Interface Anal. 36(9), 1330–1334 (2004)CrossRefGoogle Scholar
  25. 25.
    Hatami, S., Nafari, A., Nyborg, L., Jelvestam, U.: Galling related surface properties of powder metallurgical tool steels alloyed with and without nitrogen. Wear 269(3–4), 229–240 (2010)CrossRefGoogle Scholar
  26. 26.
    Sader, J.E., Chon, J.W.M., Mulvaney, P.: Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 70(10), 3967–3969 (1999)CrossRefGoogle Scholar
  27. 27.
    Álvarez-Asencio, R., Pan, J., Thormann, E., Rutland, M.W.: Determination of torsional spring constant of AFM cantilevers: Combining normal spring constant and classical beam theory. (2012). Rev. Sci. Instrum. (2013) (Submitted)Google Scholar
  28. 28.
    Bogdanovic, G., Meurk, A., Rutland, M.W.: Tip friction-torsional spring constant determination. Colloid Surf. B 19, 397–405 (2000)CrossRefGoogle Scholar
  29. 29.
    Heikkilä, I., Van der Heíde, E., Stam, E.D., Giraud, H., Lovato, G., Akdut, N., Clarysse, F., Caenen, P.: Tool material aspects in forming of stainless steel with easy-to-clean lubricants. Innovations in metal forming. Brescia, Italy (2004)Google Scholar
  30. 30.
    Cappella, B., Dietler, G.: Force-distance curves by atomic force microscopy. Surf. Sci. Rep. 34(1–3), 1–104 (1999)Google Scholar
  31. 31.
    Johanna, S., Mark, W.R., Phil, A.: A novel technique for the in situ calibration and measurement of friction with the atomic force microscope. Rev. Sci. Instrum. 76(8), 083710 (2005)CrossRefGoogle Scholar
  32. 32.
    Feiler, A.A., Bergstrom, L., Rutland, M.W.: Superlubricity using repulsive van der Waals forces. Langmuir 24(6), 2274–2276 (2008)CrossRefGoogle Scholar
  33. 33.
    Thormann, E., Simonsen, A.C., Hansen, P.L., Mouritsen, O.G.: Force trace hysteresis and temperature dependence of bridging nanobubble induced forces between hydrophobic surfaces. ACS Nano 2(9), 1817–1824 (2008)CrossRefGoogle Scholar
  34. 34.
    Carambassis, A., Jonker, L.C., Attard, P., Rutland, M.W.: Forces measured between hydrophobic surfaces due to a submicroscopic bridging bubble. Phys. Rev. Lett. 80(24), 5357–5360 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Rubén Álvarez-Asencio
    • 1
  • Jinshan Pan
    • 1
  • Esben Thormann
    • 1
  • Mark W. Rutland
    • 1
    • 2
    Email author
  1. 1.Department of Surface and Corrosion Science, School of Chemical Science and EngineeringKTH Royal Institute of TechnologyStockholmSweden
  2. 2.Chemicals, Materials and SurfacesSP Technical Research Institute of SwedenBoråsSweden

Personalised recommendations