Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Tribological Properties Mapping: Local Variation in Friction Coefficient and Adhesion

Abstract

Tribological properties mapping is a new technique that extracts friction coefficient and adhesion maps obtained from lateral atomic force microscope (LAFM) images. By imaging the surface systematically as a function of load, a series of images can be tiled, and pixelwise fitted to a modified Amontons’ Law to obtain friction coefficient and adhesion maps. This removes the ambiguity of friction contrast in LAFM imaging which can be a function of the load used for imaging. In ambient laboratory, air and tetradecane, a sample of Vancron®40, commercial powder metallurgical tool alloy containing nitrogen, have been scanned using a standard silicon cantilever in order to obtain tribological data. The tribological properties mapping provides unique information regarding the heterogeneous alloy microstructure as well as shedding light on the tribological behavior of the alloy.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Svagan, A.J., Azizi Samir, M.A.S., Berglund, L.A.: Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules 8(8), 2556–2563 (2007)

  2. 2.

    Thormann, E., Mizuno, H., Jansson, K., Hedin, N., Fernandez, M.S., Arias, J.L., Rutland, M.W., Pai, R.K., Bergstrom, L.: Embedded proteins and sacrificial bonds provide the strong adhesive properties of gastroliths. Nanoscale 4(13), 3910–3916 (2012)

  3. 3.

    Sababi, M., Ejnermark, S., Andersson, J.r., Claesson, P.M., Pan, J.: Microstructure influence on corrosion behavior of a Fe-Cr-VN tool alloy studied by SEM/EDS, scanning Kelvin force microscopy and electrochemical measurement. Corros. Sci. 66, 153–159 (2013)

  4. 4.

    Bogdanovic, G., Tiberg, F., Rutland, M.W.: Sliding friction between cellulose and silica surfaces. Langmuir 17(19), 5911–5916 (2001)

  5. 5.

    Israelachvili, J.: Surface forces and microrheology of molecularly thin liquid films. In: Nhushan, B. (ed.) Handbook of micro/nano tribology. CRC Press, Boca Raton (1995)

  6. 6.

    Derjaguin, B.: Molekulartheorie der äußeren reibung. Zeitschrift für physik a hadrons and nuclei 88(9), 661–675 (1934)

  7. 7.

    Berman, A., Drummond, C., Israelachvili, J.: Amontons’ law at the molecular level. Tribol. Lett. 4(2), 95–101 (1998)

  8. 8.

    Gao, J., Luedtke, W.D., Gourdon, D., Ruths, M., Israelachvili, J.N., Landman, U.: Frictional forces and Amontons’ law: From the molecular to the macroscopic scale. J. Phys. Chem. B 108(11), 3410–3425 (2004)

  9. 9.

    Feiler, A.A., Jenkins, P., Rutland, M.W.: Effect of relative humidity on adhesion and frictional properties of micro- and nano-scopic contacts. J. Adhes. Sci. Technol. 19(3–5), 165–179 (2005)

  10. 10.

    Plunkett, M.A., Feiler, A., Rutland, M.W.: Atomic force microscopy measurements of adsorbed polyelectrolyte layers. 2. Effect of composition and substrate on structure, forces, and friction. Langmuir 19(10), 4180–4187 (2003)

  11. 11.

    Feiler, A.A., Stiernstedt, J., Theander, K., Jenkins, P., Rutland, M.W.: Effect of capillary condensation on friction force and adhesion. Langmuir 23(2), 517–522 (2006)

  12. 12.

    Pilkington, G.A., Thormann, E., Claesson, P.M., Fuge, G.M., Fox, O.J.L., Ashfold, M.N.R., Leese, H., Mattia, D., Briscoe, W.H.: Amontonian frictional behaviour of nanostructured surfaces. Phys. Chem. Chem. Phys. 13(20), 9318–9326 (2011)

  13. 13.

    Thormann, E., Yun, S.H., Claesson, P.M., Linnros, J.: Amontonian friction induced by flexible surface features on microstructured silicon. ACS Appl. Mater. Interfaces 3(9), 3432–3439 (2011)

  14. 14.

    Yamada, S., Israelachvili, J.: Friction and adhesion hysteresis of fluorocarbon surfactant monolayer-coated surfaces measured with the surface forces apparatus. J. Phys. Chem. B 102(1), 234–244 (1998)

  15. 15.

    Bowden, F.P., Tabor, D.: Mechanism of metallic friction. Nature 150, 197–199 (1942)

  16. 16.

    Butt, H.-J.r., Graf, K., Kappl, M.: Physics and chemistry of interfaces, 2nd, rev. and enl. ed. Wiley-VCH, Weinheim (2006)

  17. 17.

    Sasaki, K., Koike, Y., Azehara, H., Hokari, H., Fujihira, M.: Lateral force microscope and phase imaging of patterned thiol self-assembled monolayer using chemically modified tips. Appl. Phys. A 66, 1275–1277 (1998)

  18. 18.

    Baselt, D.R., Baldeschwieler, J.D.: Lateral forces during atomic force microscopy of graphite in air. J. Vac. Sci. Technol. B 10(5), 2316–2322 (1992)

  19. 19.

    McMullen, R.L., Kelty, S.P.: Investigation of human hair fibers using lateral force microscopy. Scanning 23(5), 337–345 (2001)

  20. 20.

    Smith, J.R., Swift, J.A.: Lamellar subcomponents of the cuticular cell membrane complex of mammalian keratin fibres show friction and hardness contrast by AFM. J. Microsc. 206(3), 182–193 (2002)

  21. 21.

    Sidouni, F.Z., Nurdin, N., Chabrecek, P., Lohmann, D., Vogt, J., Xanthopoulos, N., Mathieu, H.J., Francois, P., Vaudaux, P., Descouts, P.: Surface properties of a specifically modified high-grade medical polyurethane. Surf. Sci. 491(3), 355–369 (2001)

  22. 22.

    Levi, M.D., Cohen, Y., Cohen, Y., Aurbach, D., Lapkowski, M., Vieil, E., Serose, J.: Atomic force microscopy study of the morphology of polythiophene films grafted onto the surface of a Pt microelectrode array. Synth. Met. 109(1–3), 55–65 (2000)

  23. 23.

    Ralston, J., Larson, I., Rutland, M.W., Feiler, A.A., Kleijn, M.: Atomic force microscopy and direct surface force measurements—(IUPAC technical report). Pure Appl. Chem. 77(12), 2149–2170 (2005)

  24. 24.

    Breakspear, S., Smith, J.R., Nevell, T.G., Tsibouklis, J.: Friction coefficient mapping using the atomic force microscope. Surf. Interface Anal. 36(9), 1330–1334 (2004)

  25. 25.

    Hatami, S., Nafari, A., Nyborg, L., Jelvestam, U.: Galling related surface properties of powder metallurgical tool steels alloyed with and without nitrogen. Wear 269(3–4), 229–240 (2010)

  26. 26.

    Sader, J.E., Chon, J.W.M., Mulvaney, P.: Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 70(10), 3967–3969 (1999)

  27. 27.

    Álvarez-Asencio, R., Pan, J., Thormann, E., Rutland, M.W.: Determination of torsional spring constant of AFM cantilevers: Combining normal spring constant and classical beam theory. (2012). Rev. Sci. Instrum. (2013) (Submitted)

  28. 28.

    Bogdanovic, G., Meurk, A., Rutland, M.W.: Tip friction-torsional spring constant determination. Colloid Surf. B 19, 397–405 (2000)

  29. 29.

    Heikkilä, I., Van der Heíde, E., Stam, E.D., Giraud, H., Lovato, G., Akdut, N., Clarysse, F., Caenen, P.: Tool material aspects in forming of stainless steel with easy-to-clean lubricants. Innovations in metal forming. Brescia, Italy (2004)

  30. 30.

    Cappella, B., Dietler, G.: Force-distance curves by atomic force microscopy. Surf. Sci. Rep. 34(1–3), 1–104 (1999)

  31. 31.

    Johanna, S., Mark, W.R., Phil, A.: A novel technique for the in situ calibration and measurement of friction with the atomic force microscope. Rev. Sci. Instrum. 76(8), 083710 (2005)

  32. 32.

    Feiler, A.A., Bergstrom, L., Rutland, M.W.: Superlubricity using repulsive van der Waals forces. Langmuir 24(6), 2274–2276 (2008)

  33. 33.

    Thormann, E., Simonsen, A.C., Hansen, P.L., Mouritsen, O.G.: Force trace hysteresis and temperature dependence of bridging nanobubble induced forces between hydrophobic surfaces. ACS Nano 2(9), 1817–1824 (2008)

  34. 34.

    Carambassis, A., Jonker, L.C., Attard, P., Rutland, M.W.: Forces measured between hydrophobic surfaces due to a submicroscopic bridging bubble. Phys. Rev. Lett. 80(24), 5357–5360 (1998)

Download references

Acknowledgments

This project is part of the program “Microstructure, Corrosion and Friction Control” financed by SSF, the Swedish foundation for Strategic Research. We also thank the Swedish Research Council for financial support. Uddeholms AB, Sweden, is acknowledged for supplying the Vancron®40 samples and the microstructure information of the alloy. Useful discussions with Gunnar Dunér and Emily Cranston are gratefully acknowledged.

Author information

Correspondence to Mark W. Rutland.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Álvarez-Asencio, R., Pan, J., Thormann, E. et al. Tribological Properties Mapping: Local Variation in Friction Coefficient and Adhesion. Tribol Lett 50, 387–395 (2013). https://doi.org/10.1007/s11249-013-0136-8

Download citation

Keywords

  • Friction
  • AFM
  • Atomic force microscope
  • LFM
  • Lateral atomic force microscope
  • Nanotribology
  • Friction coefficient mapping
  • Adhesion
  • Tool alloy
  • Microstructure