Tribology Letters

, Volume 47, Issue 2, pp 231–251 | Cite as

Wear Behavior of Dual Particle Size (DPS) Zircon Sand Reinforced Aluminum Alloy

  • Suresh Kumar
  • Vipin Sharma
  • Ranvir Singh Panwar
  • O. P. Pandey
Original Paper


The present investigation aims to find the combined effect of coarse and fine size particle reinforcement of zircon sand in aluminum alloy LM13 on the wear behavior. The composites are fabricated by varying the reinforcement of fine and coarse size zircon sand particles and compared with the single size reinforcement. Coarse and fine particle zircon sand of 106–125 and 20–32-μm size, respectively, are used in this study. The wear test was carried out on pin-on-disc machine. Microhardness measurement was done for developed composites. Wear track and debris are analyzed by SEM to study the wear mechanism. Line profile and EDS analysis is also done to validate the microstructural results. Study reveals that a combination of 3 % fine and 12 % coarse particle reinforced composite exhibits better wear resistance while 3 % coarse and 12 % fine particle reinforcement decreases the wear resistance. It is also observed that zircon sand particles provide effective nucleation site for the eutectic silicon. Microstructural examination shows globular and finely distributed eutectic silicon in the vicinity of the reinforced particles.


Composite Stir casting Dual particle size AMCs Zircon sand 



The authors are thankful to Armament Research Board (ARMREB), Defence Research and Development Organization (DRDO), India for providing financial support under the letter no. ARMREB/MAA/2008/105 for this study.


  1. 1.
    Kaur, K., Pandey, O.P.: Dry sliding wear behavior of zircon sand reinforced Al–Si alloy. Tribol. Lett. 38, 377–387 (2010)CrossRefGoogle Scholar
  2. 2.
    Das, S., Das, S., Das, K.: Abrasive wear of zircon sand and alumina reinforced Al–4.5 wt% Cu alloy matrix composites—a comparative study. Compos. Sci. Technol. 67, 746–751 (2007)CrossRefGoogle Scholar
  3. 3.
    Roy, R.S., Guchhait, H., Chanda, A., Basu, D., Mitra, M.K.: Improved sliding wear-resistance of alumina with sub-micron grain size: a comparison with coarser grained material. J. Eur.Ceram. Soc. 27, 4737–4743 (2007)CrossRefGoogle Scholar
  4. 4.
    Kaur, K., Pandey, O.P.: Microstructural characteristics of spray formed zircon sand reinforced LM13 composite. J. Alloy. Compd. 503, 410–415 (2010)CrossRefGoogle Scholar
  5. 5.
    Hashim, J., Looney, L., Hashmi, M.S.J.: Metal matrix composites: production by the stir casting method. J. Mater. Process. Technol. 92–93, 1–7 (1999)CrossRefGoogle Scholar
  6. 6.
    Bindumadhavan, P.N., Wah, H.K., Prabhakar, O.: Dual particle size (DPS) composites: effect on wear and mechanical properties of particulate metal matrix composites. Wear 248, 112–120 (2001)CrossRefGoogle Scholar
  7. 7.
    Zhang, Q., Wu, G., Sun, D., Chen, G., Jiang, L.: Microstructure and thermal conduction properties of an Al–12Si matrix composite reinforced with dual sized SiC particles. J. Mater. Sci. 39, 303–305 (2004)CrossRefGoogle Scholar
  8. 8.
    Ahmad, K.R., Jamaludin, S.B., Hussain, L.B., Ahmad, Z.A.: The influence of alumina particle size on sintered density and hardness of discontinuous reinforced aluminum metal matrix composite. J. Teknol. 42(A), 49–57 (2005)Google Scholar
  9. 9.
    Ozdemir, N., Yakuphanoglu, F.: The effects of particle size and volume fraction of Al2O3 on electronic thermal conductivity of α-Al2O3 particulate reinforced aluminum composites (Al/Al2O3-MMC). Int. J. Adv. Manuf. Technol. 29, 226–229 (2006)CrossRefGoogle Scholar
  10. 10.
    Yılmaz, O., Buytoz, S.: Abrasive wear of Al2O3-reinforced aluminium-based MMCs. Compos. Sci. Technol. 61, 2381–2392 (2001)CrossRefGoogle Scholar
  11. 11.
    Zou, X.G., Miyahara, H., Yamamoto, K., Ogi, K.: Sliding wear behavior of Al–Si–Cu composites reinforced with SiC particles. Mater. Sci. Technol. 19, 1519–1526 (2003)CrossRefGoogle Scholar
  12. 12.
    Surappa, M.K.: Aluminium matrix composites: challenges and opportunities. Sadhana 28, 319–334 (2003)CrossRefGoogle Scholar
  13. 13.
    Amirkhanlou, S., Niroumand, B.: Synthesis and characterization of 356-SiCp composites by stir casting and compocasting methods. Trans. Nonferrous Met. Soc. China 20, 788–793 (2010)CrossRefGoogle Scholar
  14. 14.
    Hashim, J., Looney, L., Hashmi, M.S.J.: Particle distribution in cast metal matrix composites—part I. J. Mater. Process. Technol. 123, 251–257 (2002)CrossRefGoogle Scholar
  15. 15.
    Hashim, J., Looney, L., Hashmi, M.S.J.: Particle distribution in cast metal matrix composites—part II. J. Mater. Process. Technol. 12, 258–263 (2002)CrossRefGoogle Scholar
  16. 16.
    Youssef, Y.M., Dashwood, R.J., Lee, P.D.: Effect of clustering on particle pushing and solidification behavior in TiB2 reinforced aluminium PMMCs. Compos. A 36, 747–763 (2005)CrossRefGoogle Scholar
  17. 17.
    Nakae, H., Wu, S.: Engulfment of Al2O3 particles during solidification of aluminum matrix composites. Mater. Sci. Eng., A 252, 232–238 (1998)CrossRefGoogle Scholar
  18. 18.
    Segurado, J., González, C., Lorca, J.L.: A numerical investigation of the effect of particle clustering on the mechanical properties of composites. Acta Mater. 51, 2355–2369 (2003)CrossRefGoogle Scholar
  19. 19.
    Cruz, K.S., Meza, E.S., Fernandes, F.A.P., Quaresma, J.M.V., Casteletti, L.C., Garcia, A.: Dendritic arm spacing affecting mechanical properties and wear behavior of Al–Sn and Al–Si alloys directionally solidified under unsteady–state conditions. Metall. Mater. Trans. A 41, 973 (2010)CrossRefGoogle Scholar
  20. 20.
    Kaur, K.O., Pandey, P.: Wear and microstructural characteristics of spray atomized zircon sand reinforced LM13 alloy. Mat. Wiss. Werkst. 41(7), 21 (2010)Google Scholar
  21. 21.
    Chaudhury, S.K., Singh, A.K., Sivaramakrishnan, C.S., Panigrahi, S.C.: Wear and friction behavior of spray formed and stir cast Al–2Mg–11TiO2 composites. Wear 258, 759–767 (2005)CrossRefGoogle Scholar
  22. 22.
    Das, S., Mondal, D.P., Dixit, G.: Correlation of abrasive wear with microstructure and mechanical properties of pressure die-cast aluminum hard-particle composite. Metall. Mater. Trans. A 32, 633–642 (2001)CrossRefGoogle Scholar
  23. 23.
    Das, S., Udhayabanu, V., Das, S., Das, K.: Synthesis and characterization of zircon sand/Al-4.5 wt% Cu composite produced by stir casting route. J. Mater. Sci. 41, 4668–4677 (2006)CrossRefGoogle Scholar
  24. 24.
    Sharma, S.C., Girish, B.M., Somashekar, D.R., Satish, B.M., Kamath, Rathnakar.: Sliding wear behaviour of zircon particles reinforced ZA-27 alloy composite materials. Wear 224, 89–94 (1999)CrossRefGoogle Scholar
  25. 25.
    Bakshi, S.R., Wang, D., Price, T., Zhang, D., Keshri, A.K., Chen, Y., McCartney, P., Graham, D., Shipway, H., Agarwal, A.: Microstructure and wear properties of aluminum/aluminum-silicon composite coatings prepared by cold spraying. Surf. Coat. Technol. 204, 503–551 (2009)CrossRefGoogle Scholar
  26. 26.
    Zhang, J., Alpas, A.T.: Transition between mild and severe wear in aluminium alloys. Acta Mater. 45, 513–528 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Suresh Kumar
    • 1
  • Vipin Sharma
    • 1
  • Ranvir Singh Panwar
    • 1
  • O. P. Pandey
    • 1
  1. 1.School of Physics and Material ScienceThapar UniversityPatialaIndia

Personalised recommendations