Tribology Letters

, Volume 47, Issue 2, pp 195–202 | Cite as

Tribological Properties of Nanodiamond-Epoxy Composites

  • I. Neitzel
  • V. Mochalin
  • J.A. Bares
  • R.W. Carpick
  • A. Erdemir
  • Y. Gogotsi
Original Paper

Abstract

Owing to its superior mechanical properties, nanodiamond (ND) holds great potential to improve tribological characteristics of composites. In this study, we report on the wear and dry friction of epoxy-ND composites prepared from as-received and aminated ND across the length scale range from macro to nano. Comparison of macroscale, microscale, and nanoscale frictional behavior shows that ND is highly effective in improving the wear resistance and friction coefficients of polymer matrices across the different length scales. Although with both types of ND wear resistance and friction coefficients of epoxy-ND composites were significantly improved, aminated ND outperformed as-received ND, which we account to the formation of a strong interface between aminated ND and the epoxy matrix. This study also shows that agglomerates within epoxy-ND composites containing 25 vol.% ND were able to wear an alumina counterbody, indicating very high hardness and Young’s modulus of these agglomerates, that can eventually replace micron sized diamonds currently used in industrial abrasive applications.

Keywords

Tribology Nanodiamond Epoxy Nanocomposite Friction Wear 

Notes

Acknowledgments

Centralized Research Facilities at Drexel University provided access to the NanoIndenter XP and optical light microscope used in this work. AFM measurements were performed at the Nano-Bio Interface Center at the University of Pennsylvania. Macroscopic tribological properties were measured at the Argonne National Laboratory supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, under Contract No. DE-AC02-06CH11357. The work at Drexel University was supported by NSF grant CMMI-0927963.

References

  1. 1.
    Klein, J.: Shear, friction, and lubrication forces between polymer-bearing surfaces. Annu. Rev. Mater. Sci. 26, 581–612 (1996)CrossRefGoogle Scholar
  2. 2.
    Lancaster, J.K.: Polymer-based bearing materials: the role of fillers and fibre reinforcement. Tribology 5, 249–255 (1972)CrossRefGoogle Scholar
  3. 3.
    Rehbein, P., Wallaschek, J.: Friction and wear behaviour of polymer/steel and alumina/alumina under high-frequency fretting conditions. Wear 216, 97–105 (1998)CrossRefGoogle Scholar
  4. 4.
    Widmer, M.R., Heuberger, M., Vörös, J., Spencer, N.D.: Influence of polymer surface chemistry on frictional properties under protein-lubrication conditions: implications for hip-implant design. Tribol. Lett. 10, 111–116 (2001)CrossRefGoogle Scholar
  5. 5.
    Friedrich, K., Zhang, Z., Schlarb, A.K.: Effects of various fillers on the sliding wear of polymer composites. Compos. Sci. Technol. 65, 2329–2343 (2005)CrossRefGoogle Scholar
  6. 6.
    Donnet, C., Erdemir, A.: Historical developments and new trends in tribological and solid lubricant coatings. Surf. Coat. Technol. 180, 76–84 (2004)CrossRefGoogle Scholar
  7. 7.
    Chang, L., Zhang, Z., Ye, L., Friedrich, K.: Tribological properties of high temperature resistant polymer composites with fine particles. Tribol. Int. 40, 1170–1178 (2007)CrossRefGoogle Scholar
  8. 8.
    Chang, L., Zhang, Z., Breidt, C., Friedrich, K.: Tribological properties of epoxy nanocomposites: I. Enhancement of the wear resistance by nano-TiO2 particles. Wear 258, 141–148 (2005)CrossRefGoogle Scholar
  9. 9.
    Zhang, Z., Breidt, C., Chang, L., Haupert, F., Friedrich, K.: Enhancement of the wear resistance of epoxy: short carbon fibre, graphite, PTFE and nano-TiO2. Compos. A Appl. Sci. Manuf. 35, 1385–1392 (2004)CrossRefGoogle Scholar
  10. 10.
    Burris, D.L., Zhao, S., Duncan, R., Lowitz, J., Perry, S.S., Schadler, L.S., Sawyer, W.G.: A route to wear resistant PTFE via trace loadings of functionalized nanofillers. Wear 267, 653–660 (2009)CrossRefGoogle Scholar
  11. 11.
    Robertson, J.: Properties of diamond-like carbon. Surf. Coat. Technol. 50, 185–203 (1992)CrossRefGoogle Scholar
  12. 12.
    Mochalin, V.N., Shenderova, O., Ho, D., Gogotsi, Y.: The properties and applications of nanodiamonds. Nat. Nanotechnol. 7, 11–23 (2012)CrossRefGoogle Scholar
  13. 13.
    Schrand, A.M., Johnson, J., Dai, L., Hussain, S.M., Schlager, J.J., Zhu, L., Hong, Y., Ōsawa, E.: Cytotoxicity and genotoxicity of carbon nanomaterials. In: Webster, T.J. (ed.) Safety of Nanoparticles: From Manufacturing to Clinical Applications, pp. 1–29. Springer, New York (2009)Google Scholar
  14. 14.
    Osswald, S., Yushin, G., Mochalin, V., Kucheyev, S.O., Gogotsi, Y.: Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J. Am. Chem. Soc. 128, 11635–11642 (2006)CrossRefGoogle Scholar
  15. 15.
    Khabashesku, V.N., Margrave, J.L., Barrera, E.V.: Functionalized carbon nanotubes and nanodiamonds for engineering and biomedical applications. Diam. Relat. Mater. 14, 859–866 (2005)CrossRefGoogle Scholar
  16. 16.
    Lam, R., Chen, M., Pierstorff, E., Huang, H., Osawa, E., Ho, D.: Nanodiamond-embedded microfilm devices for localized chemotherapeutic elution. ACS Nano 2, 2095–2102 (2008)CrossRefGoogle Scholar
  17. 17.
    Portet, C., Yushin, G., Gogotsi, Y.: Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45, 2511–2518 (2007)CrossRefGoogle Scholar
  18. 18.
    Zhang, Q., Mochalin, V.N., Neitzel, I., Knoke, I.Y., Han, J., Klug, C.A., Zhou, J.G., Lelkes, P.I., Gogotsi, Y.: Fluorescent PLLA-nanodiamond composites for bone tissue engineering. Biomaterials 32, 87–94 (2011)CrossRefGoogle Scholar
  19. 19.
    Behler, K.D., Stravato, A., Mochalin, V., Korneva, G., Yushin, G., Gogotsi, Y.: Nanodiamond-polymer composite fibers and coatings. ACS Nano 3, 363–369 (2009)CrossRefGoogle Scholar
  20. 20.
    Stravato, A., Knight, R., Mochalin, V., Picardi, S.C.: HVOF-sprayed nylon-11+ nanodiamond composite coatings: production & characterization. J. Therm. Spray Technol. 17, 812–817 (2008)CrossRefGoogle Scholar
  21. 21.
    Shenderova, O., Tyler, T., Cunningham, G., Ray, M., Walsh, J., Casulli, M., Hens, S., McGuire, G., Kuznetsov, V., Lipa, S.: Nanodiamond and onion-like carbon polymer nanocomposites. Diam. Relat. Mater. 16, 1213–1217 (2007)CrossRefGoogle Scholar
  22. 22.
    Mochalin, V.N., Neitzel, I., Etzold, B.J.M., Peterson, A., Palmese, G., Gogotsi, Y.: Covalent incorporation of aminated nanodiamond into an epoxy polymer network. ACS Nano 5, 7494–7502 (2011)CrossRefGoogle Scholar
  23. 23.
    Grill, A.: Tribology of diamond like carbon and related materials: an updated review. Surf. Coat. Technol. 94, 507–513 (1997)CrossRefGoogle Scholar
  24. 24.
    Konicek, A., Grierson, D., Gilbert, P., Sawyer, W., Sumant, A., Carpick, R.: Origin of ultralow friction and wear in ultrananocrystalline diamond. Phys. Rev. Lett. 100, 235502 (2008)CrossRefGoogle Scholar
  25. 25.
    Lee, J.-Y., Lim, D.-S.: Tribological behavior of PTFE film with nanodiamond. Surf. Coat. Technol. 188, 534–538 (2004)CrossRefGoogle Scholar
  26. 26.
    Voznyakovskii, A., Ginzburg, B., Rashidov, D., Tochil’nikov, D., Tuichiev, S.: Structure, mechanical, and tribological characteristics of polyurethane modified with nanodiamonds. Polym. Sci. Ser. A 52, 1044–1050 (2010)CrossRefGoogle Scholar
  27. 27.
    Neitzel, I., Mochalin, V., Knoke, I., Palmese, G.R., Gogotsi, Y.: Mechanical properties of epoxy composites with high contents of nanodiamond. Compos. Sci. Technol. 71, 710–716 (2011)CrossRefGoogle Scholar
  28. 28.
    Mochalin, V., Osswald, S., Gogotsi, Y.: Contribution of functional groups to the Raman spectrum of nanodiamond powders. Chem. Mater. 21, 273–279 (2009)CrossRefGoogle Scholar
  29. 29.
    Palmese, G.R., McCullough, R.L.: Effect of epoxy-amine stoichiometry on cured resin material properties. J. Appl. Polym. Sci. 46, 1863–1873 (1992)CrossRefGoogle Scholar
  30. 30.
    Bershtein, V., Karabanova, L., Sukhanova, T., Yakushev, P., Egorova, L., Lutsyk, E., Svyatyna, A., Vylegzhanina, M.: Peculiar dynamics and elastic properties of hybrid semi-interpenetrating polymer network–3-D diamond nanocomposites. Polymer 49, 836–842 (2008)CrossRefGoogle Scholar
  31. 31.
    Sader, J.E., Chon, J.W.M., Mulvaney, P.: Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 70, 3967–3969 (1999)CrossRefGoogle Scholar
  32. 32.
    Ogletree, D.F., Carpick, R.W., Salmeron, M.: Calibration of frictional forces in atomic force microscopy. Rev. Sci. Instrum. 67, 3298–3306 (1996)CrossRefGoogle Scholar
  33. 33.
    Varenberg, M., Etsion, I., Halperin, G.: An improved wedge calibration method for lateral force in atomic force microscopy. Rev. Sci. Instrum. 74, 3362–3367 (2003)CrossRefGoogle Scholar
  34. 34.
    Shen, Z., Johnsson, M., Zhao, Z., Nygren, M.: Spark plasma sintering of alumina. J. Am. Ceram. Soc. 85, 1921–1927 (2002)CrossRefGoogle Scholar
  35. 35.
    Lim, D.P., Lee, J.Y., Lim, D.S., Ahn, S.G., Lyo, I.W.: Effect of reinforcement particle size on the tribological properties of nano-diamond filled polytetrafluoroethylene based coating. J. Nanosci. Nanotechnol. 9, 4197–4201 (2009)CrossRefGoogle Scholar
  36. 36.
    Carroll, B., Gogotsi, Y., Kovalchenko, A., Erdemir, A., McNallan, M.J.: Effect of humidity on the tribological properties of carbide-derived carbon (CDC) films on silicon carbide. Tribol. Lett. 15, 51–55 (2003)CrossRefGoogle Scholar
  37. 37.
    Liu, Y., Erdemir, A., Meletis, E.I.: A study of the wear mechanism of diamond-like carbon films. Surf. Coat. Technol. 82, 48–56 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • I. Neitzel
    • 1
  • V. Mochalin
    • 1
  • J.A. Bares
    • 2
  • R.W. Carpick
    • 2
  • A. Erdemir
    • 3
  • Y. Gogotsi
    • 1
  1. 1.Department of Materials Science & EngineeringDrexel UniversityPhiladelphiaUSA
  2. 2.Department of Mechanical Engineering & Applied MechanicsUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Energy Systems DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations