Tribology Letters

, Volume 47, Issue 2, pp 211–221 | Cite as

Data-Driven Model for Estimation of Friction Coefficient Via Informatics Methods

  • Eric W. Bucholz
  • Chang Sun Kong
  • Kellon R. Marchman
  • W. Gregory Sawyer
  • Simon R. Phillpot
  • Susan B. Sinnott
  • Krishna Rajan
Original Paper


As technologies progress, the development of new mechanical systems demands the rapid determination of friction coefficients of materials. Data mining and materials informatics methods are used here to generate a predictive model that enables efficient high-throughput screening of ceramic materials, some of which are candidate high-temperature, solid-state lubricants. Through the combination of principal component analysis and recursive partitioning using a small dataset comprised of intrinsic material properties, we develop a decision tree-based model comprised of if-then rules which estimates the friction coefficients of a wide range of materials. This data-driven model has a high degree of accuracy with an R 2 value of 0.8904 and provides a range of possible friction coefficients that accounts for the possible variability of a material’s actual friction coefficient.


Ceramics Statistical analysis Tribology databases Unlubricated friction 



The authors EWB, KRM, WGS, SRP, and SBS gratefully acknowledge the support of the Office of Naval Research under grant number N000141010165. CSK and KR acknowledge the support from the NSF-ARI Program under grant number CMMI 09-389018 and the Army Research Office under grant number W911NF-10-0397. KR acknowledges the support from the Wilkinson Professorship of Interdisciplinary Engineering. The authors also thank Jonathan Liddy, former undergraduate student from the University of Florida, for his role in the compilation of the properties from the literature used for the material dataset in this study.


  1. 1.
    Ludema, K.C.: Mechanism-based modeling of friction and wear. Wear 200, 1–7 (1996)CrossRefGoogle Scholar
  2. 2.
    Luengo, G., Campbell, S.E., Srdanov, V.I., Wudl, F., Israelachvili, J.N.: Direct measurement of the adhesion and friction of smooth C60 surfaces. Chem. Mater. 9, 1166–1171 (1997)CrossRefGoogle Scholar
  3. 3.
    Maeda, N., Chen, N.H., Tirrell, M., Israelachvili, J.N.: Adhesion and friction mechanisms of polymer-on-polymer surfaces. Science 297, 379–382 (2002)CrossRefGoogle Scholar
  4. 4.
    Johnson, K.L.: The contribution of micro/nano-tribology to the interpretation of dry friction. Proc. Inst. Mech. Eng. C 214, 11–22 (2000)CrossRefGoogle Scholar
  5. 5.
    Kopta, S., Salmeron, M.: The atomic scale origin of wear on mica and its contribution to friction. J. Chem. Phys. 113, 8249–8252 (2000)CrossRefGoogle Scholar
  6. 6.
    van den Oetelaar, R.J.A., Flipse, C.F.J.: Atomic-scale friction on diamond(111) studied by ultra-high vacuum atomic force microscopy. Surf. Sci. 384, L828–L835 (1997)CrossRefGoogle Scholar
  7. 7.
    Zhao, X.Y., Perry, S.S.: Temperature-dependent atomic scale friction and wear on PbS(100). Tribol. Lett. 39, 169–175 (2010)CrossRefGoogle Scholar
  8. 8.
    Sanchez-Lopez, J.C., Donnet, C., Loubet, J.L., Belin, M., Grill, A., Patel, V., Jahnes, C.: Tribological and mechanical properties of diamond-like carbon prepared by high-density plasma. Diam. Relat. Mater. 10, 1063–1069 (2001)CrossRefGoogle Scholar
  9. 9.
    Polcar, T., Novak, R., Siroky, P.: The tribological characteristics of TiCN coating at elevated temperatures. Wear 260, 40–49 (2006)CrossRefGoogle Scholar
  10. 10.
    Burris, D.L., Perry, S.S., Sawyer, W.G.: Macroscopic evidence of thermally activated friction with polytetrafluoroethylene. Tribol. Lett. 27, 323–328 (2007)CrossRefGoogle Scholar
  11. 11.
    Barry, P.R., Chiu, P.Y., Perry, S.S., Sawyer, W.G., Phillpot, S.R., Sinnott, S.B.: The effect of normal load on polytetrafluoroethylene tribology. J. Phys. Condens. Matter 21, 144201 (2009)CrossRefGoogle Scholar
  12. 12.
    Schall, J.D., Gao, G.T., Harrison, J.A.: Effects of adhesion and transfer film formation on the tribology of self-mated DLC contacts. J. Phys. Chem. C 114, 5321–5330 (2010)CrossRefGoogle Scholar
  13. 13.
    Pastewka, L., Moser, S., Moseler, M.: Atomistic insights into the running-in, lubrication, and failure of hydrogenated diamond-like carbon coatings. Tribol. Lett. 39, 49–61 (2010)CrossRefGoogle Scholar
  14. 14.
    Zhong, W., Tomanek, D.: First-principles theory of atomic-scale friction. Phys. Rev. Lett. 64, 3054–3057 (1990)CrossRefGoogle Scholar
  15. 15.
    Liang, T., Sawyer, W.G., Perry, S.S., Sinnott, S.B., Phillpot, S.R.: First-principles determination of static potential energy surfaces for atomic friction in MoS2 and MoO3. Phys. Rev. B 77, 104105 (2008)CrossRefGoogle Scholar
  16. 16.
    Ferris, K.F., Peurrung, L.M., Marder, J.: Materials informatics: fast track to new materials. Adv. Mater. Process. 165, 50–51 (2007)Google Scholar
  17. 17.
    Gang, Y., Jingzhong, C., Li, Z.: Data mining techniques for materials informatics: datasets preparing and applications. In: Zhao, C., Wu, Y., Wang, J., Liu, Q. (eds.) Proceedings of the 2009 Second International Symposium on Knowledge Acquisition and Modeling, vol. 2, pp. 189–192. Wuhan, China, Nov 30–Dec 1 (2009)Google Scholar
  18. 18.
    Nowers, J.R., Broderick, S.R., Rajan, K., Narasimhan, B.: Combinatorial methods and informatics provide insight into physical properties and structure relationships during IPN formation. Macromol. Rapid Commun. 28, 972–976 (2007)CrossRefGoogle Scholar
  19. 19.
    George, L., Hrubiak, R., Rajan, K., Saxena, S.K.: Principal component analysis on properties of binary and ternary hydrides and a comparison of metal versus metal hydride properties. J. Alloy. Compd. 478, 731–735 (2009)CrossRefGoogle Scholar
  20. 20.
    Hautier, G., Fischer, C., Ehrlacher, V., Jain, A., Ceder, G.: Data mined ionic substitutions for the discovery of new compounds. Inorg. Chem. 50, 656–663 (2011)CrossRefGoogle Scholar
  21. 21.
    Erdemir, A.: A crystal-chemical approach to lubrication by solid oxides. Tribol. Lett. 8, 97–102 (2000)CrossRefGoogle Scholar
  22. 22.
    Erdemir, A., Li, S.H., Jin, Y.S.: Relation of certain quantum chemical parameters to lubrication behavior of solid oxides. Int. J. Mol. Sci. 6, 203–218 (2005)CrossRefGoogle Scholar
  23. 23.
    Callister, W.D.: Materials Science and Engineering: An Introduction, 6th edn. Wiley, New York (2003)Google Scholar
  24. 24.
    Gale, J.D., Rohl, A.L.: The general utility lattice program (GULP). Mol. Simul. 29, 291–341 (2003)CrossRefGoogle Scholar
  25. 25.
    Glasser, L.: Solid-state energetics and electrostatics: Madelung constants and Madelung energies. Inorg. Chem. (2012). doi: 10.1021/ic2023852 Google Scholar
  26. 26.
    Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer, New York (2002)Google Scholar
  27. 27.
    Chong, I.G., Jun, C.H.: Performance of some variable selection methods when multicollinearity is present. Chemom. Intell. Lab. Syst. 78, 103–112 (2005)CrossRefGoogle Scholar
  28. 28.
    Refaeilzadeh, P., Tang, L., Liu, H.: Cross-validation. In: Liu, L., Ozsu, M.T. (eds.) Encyclopedia of Database Systems, pp. 532–538. Springer, New York (2009)Google Scholar
  29. 29.
    Ohmae, N.: Humidity effects on tribology of advanced carbon materials. Tribol. Int. 39, 1497–1502 (2006)CrossRefGoogle Scholar
  30. 30.
    Horn, H.M., Deere, D.U.: Frictional characteristics of minerals. Geotechnique 12, 319–335 (1962)CrossRefGoogle Scholar
  31. 31.
    Moore, D.E., Lockner, D.A.: Crystallographic controls on the frictional behavior of dry and water-saturated sheet structure minerals. J. Geophys. Res. 109, B03401 (2004)CrossRefGoogle Scholar
  32. 32.
    Miyoshi, K.: Solid lubricants and coatings for extreme environments: state-of-the-art survey. Tech. Memo. NASA/TM, 214668 (2007)Google Scholar
  33. 33.
    Zhao, X.Y., Phillpot, S.R., Sawyer, W.G., Sinnott, S.B., Perry, S.S.: Transition from thermal to athermal friction under cryogenic conditions. Phys. Rev. Lett. 102, 186102 (2009)CrossRefGoogle Scholar
  34. 34.
    Woydt, M., Habig, K.H.: High temperature tribology of ceramics. Tribol. Int. 22, 75–88 (1989)CrossRefGoogle Scholar
  35. 35.
    Physical and optical properties of minerals. In: Haynes, W.M. (ed.) CRC Handbook of Chemistry and Physics, pp. 4–144. CRC Press/Taylor and Francis, Boca Raton (2011)Google Scholar
  36. 36.
    Gersten, J.I., Smith, F.W.: The Physics and Chemistry of Materials. Wiley, New York (2001)Google Scholar
  37. 37.
    Goto, M., Kasahara, A., Tosa, M.: Low frictional property of copper oxide thin films optimised using a combinatorial sputter coating system. Appl. Surf. Sci. 252, 2482–2487 (2006)CrossRefGoogle Scholar
  38. 38.
    Anthony, J.W., Bideaux, R.A., Bladh, K.W., Nichols, M.C.: Handbook of Mineralogy, Vol. 3: Halides, Hydroxides, Oxides. Mineral Data Publishing, Tucson (1997)Google Scholar
  39. 39.
    Ralph, J., Chau, I.: Molybdite. (2011). Accessed 23 January 2012
  40. 40.
    Ralph, J., Chau, I.: Shcherbinaite. (2011). Accessed 23 January 2012
  41. 41.
    Prasad, S.V., McDevitt, N.T., Zabinski, J.S.: Tribology of tungsten disulfide films in humid environments: the role of a tailored metal-matrix composite substrate. Wear 230, 24–34 (1999)CrossRefGoogle Scholar
  42. 42.
    Anthony, J.W., Bideaux, R.A., Bladh, K.W., Nichols, M.C.: Handbook of Mineralogy, Vol. I: Elements, Sulfides. Sulfosalts. Mineral Data Publishing, Tucson (1990)Google Scholar
  43. 43.
    Kubart, T., Polcar, T., Kopecky, L., Novak, R., Novakova, D.: Temperature dependence of tribological properties of MoS2 and MoSe2 coatings. Surf. Coat. Technol. 193, 230–233 (2005)CrossRefGoogle Scholar
  44. 44.
    Ralph, J., Chau, I.: Drysdallite. (2011). Accessed 23 January 2012
  45. 45.
    Erdemir, A.: Crystal chemistry and solid lubricating properties of the monochalcogenides gallium selenide and tin selenide. Tribol. Trans. 37, 471–478 (1994)CrossRefGoogle Scholar
  46. 46.
    Gurzadyan, G., Tzankov, P.: Dielectrics and Electrooptics. In: Martienssen, W., Warlimont, H. (eds.) Springer Handbook of Condensed Matter and Materials Data, pp. 817–901. Springer, Berlin (2005)CrossRefGoogle Scholar
  47. 47.
    Ralph, J., Chau, I.: Freboldite. (2011). Accessed 23 January 2012
  48. 48.
    Lewis, R.J.: Sax’s Dangerous Properties of Industrial Materials, vol. 3, 11th ed. Wiley, Hoboken (2004)Google Scholar
  49. 49.
    Physical constants of inorganic compounds. In: Haynes, W.M. (ed.) CRC Handbook of Chemistry and Physics, pp. 4-43–101. CRC Press/Taylor and Francis, Boca Raton (2011)Google Scholar
  50. 50.
    Aylward, G.H., Findlay, T.J.V.: SI Chemical Data. Wiley, New York (1971)Google Scholar
  51. 51.
    Properties of semiconductors. In: Haynes, W.M. (ed.) CRC Handbook of Chemistry and Physics, pp. 12-80–93. CRC Press/Taylor and Francis, Boca Raton, FL (2011)Google Scholar
  52. 52.
    Dierks, S.: Nickel telluride: Material safety data sheet. (1999). Accessed 23 January 2012
  53. 53.
    Makovetskii, G.I., Vas’kov, D.G., Yanushkevich, K.I.: Structure, density, and microhardness of Co1–xNixTe (0 < x < 1) solid solutions. Inorg. Mater. 38, 108–110 (2002)CrossRefGoogle Scholar
  54. 54.
    Hikichi, Y., Ota, T., Daimon, K., Hattori, T., Mizuno, M.: Thermal, mechanical, and chemical properties of sintered xenotime-type RPO4 (R=Y, Er, Yb, or Lu). J. Am. Ceram. Soc. 81, 2216–2218 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Eric W. Bucholz
    • 1
  • Chang Sun Kong
    • 2
  • Kellon R. Marchman
    • 3
  • W. Gregory Sawyer
    • 3
  • Simon R. Phillpot
    • 1
  • Susan B. Sinnott
    • 1
  • Krishna Rajan
    • 2
  1. 1.Department of Materials Science and EngineeringUniversity of FloridaGainesvilleUSA
  2. 2.Department of Materials Science and EngineeringIowa State UniversityAmesUSA
  3. 3.Department of Mechanical and Aerospace EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations