Tribology Letters

, Volume 46, Issue 3, pp 221–232 | Cite as

Development of a ta-C Wear Resistant Coating with Composite Interlayer for Recording Heads of Magnetic Tape Drives

  • Ehsan Rismani
  • S. K. Sinha
  • H. Yang
  • S. Tripathy
  • C. S. Bhatia
Original Paper

Abstract

The effect of two different surface modification methods on the wear life of the coating of magnetic tape drive heads has been studied. In this research, the heads were coated with 10 nm tetrahedral amorphous carbon (ta-C) film using filtered cathodic vacuum arc (FCVA) technique. The surface of the heads was pretreated by bombarding with energetic carbon ions or by developing a Si–Al–C composite interlayer before deposition of the coating. The coated heads were tested at a real head/tape interface of a tape drive. Surface characterization and tribological behavior of the head coatings with and without surface modification has been studied by transmission electron microscopy (TEM), Auger electron spectroscopy (AES), and scanning electron microscopy (SEM). The results reveal that the ta-C coating without any surface modification is not durable and the coating fails due to delamination. Pre-treating the head surface with energetic carbon ions improves the durability of the coating, especially on the head read/write elements; however, the coating of the head ceramic substrate is still partially delaminated. The application of a Si–Al–C composite interlayer is shown to be able to solve the delamination problem effectively and increase the wear life of the coating up to six times in comparison with the sample pretreated with carbon ions. The formation of strong chemical bonds between the head surface and the overcoat is found to be an important factor in improving the durability of the ta-C head coating.

Keywords

Magnetic data recording heads Carbon Ceramic Coatings Wear-resistant Surface modification Delamination wear AES (Auger) 

References

  1. 1.
    Dee, R.H.: Magnetic tape for data storage: an enduring technology. Proc. IEEE 96(11), 1775–1785 (2008)CrossRefGoogle Scholar
  2. 2.
    International Magnetic Tape Application and Systems Roadmap, Information Storage Industry Consortium (INSIC), USA (2011)Google Scholar
  3. 3.
    Wallace, R.L.: The reproduction of magnetically recorded signal. Bell Syst. Technol. J. 30, 1145–1173 (1951)Google Scholar
  4. 4.
    Thomson, T., Abelmann, L., Groenland, H.: Magnetic data storage: past present and future. In: Azzerboni, B., Asti, G., Pareti, L., Ghidini, M. (eds.) Magnetic nanostructures in modern technology, pp. 237–306. Springer, Netherlands (2008)CrossRefGoogle Scholar
  5. 5.
    Spada, F.: Contribution of electrochemical processes to increased head-media spacing in tape drives, reported in INSIC TAPE Program Technical Reviews (www.insic.org/tape.htm). In. Boise, Idaho, USA, (2011), also abstract DT-06 of the 52 nm Annual MMM conference, Tampa, Florida November, 2007
  6. 6.
    Sourty, E., Sullivan, J.L., De Jong, L.A.M.: Pole tip recession in linear recording heads. IEEE Trans. Magn. 39(3 II), 1859–1861 (2003)CrossRefGoogle Scholar
  7. 7.
    Bhushan, B., Patton, S.T., Sundaram, R., Dey, S.: Pole tip recession studies of hard carbon-coated thin-film tape heads. J. Appl. Phys. 79(8 PART 2B), 5916–5918 (1996)CrossRefGoogle Scholar
  8. 8.
    Bhushan, B., Theunissen, G.S.A.M., Li, X.: Tribological studies of chromium oxide films for magnetic recording applications. Thin Solid Films 311(1–2), 67–80 (1997)CrossRefGoogle Scholar
  9. 9.
    Sourty, E., Sullivan, J.L., Bijker, M.D.: Chromium oxide coatings applied to magnetic tape heads for improved wear resistance. Tribol. Int. 36(4–6), 389–396 (2003). doi:10.1016/s0301-679x(02)00214-1 CrossRefGoogle Scholar
  10. 10.
    Theunissen, G.S.A.M.: Wear coatings for magnetic thin film magnetic recording heads. Tribol. Int. 31(9), 519–523 (1998). doi:10.1016/s0301-679x(98)00062-0 CrossRefGoogle Scholar
  11. 11.
    Gupta, B.K., Bhushan, B.: Mechanical and tribological properties of hard carbon coatings for magnetic recording heads. Wear 190(1), 110–122 (1995)CrossRefGoogle Scholar
  12. 12.
    Scott, W.W., Bhushan, B., Lakshmikumaran, A.V.: Ultrathin diamond-like carbon coatings used for reduction of pole tip recession in magnetic tape heads. J. Appl. Phys. 87(9), 6182–6184 (2000)CrossRefGoogle Scholar
  13. 13.
    Robertson, J.: Ultrathin carbon coatings for magnetic storage technology. Thin Solid Films 383(1–2), 81–88 (2001)CrossRefGoogle Scholar
  14. 14.
    Bhatia, C.S., Anders, S., Brown, I.G., Bobb, K., Hsiao, R., Bogy, D.B.: Ultra-thin overcoats for the head/disk interface tribology. J. Tribol. 120(4), 795–799 (1998). doi:10.1115/1.2833781 CrossRefGoogle Scholar
  15. 15.
    Pharr, G.M., Callahan, D.L., McAdams, S.D., Tsui, T.Y., Anders, S., Anders, A., III, J.W.A., Brown, I.G., Bhatia, C.S., Silva, S.R.P., Robertson, J.: Hardness, elastic modulus, and structure of very hard carbon films produced by cathodic-arc deposition with substrate pulse biasing. Appl. Phys. Lett. 68(6), 779–781 (1996)Google Scholar
  16. 16.
    Robertson, J.: Requirements of ultrathin carbon coatings for magnetic storage technology. Tribol. Int. 36(4–6), 405–415 (2003). doi:10.1016/s0301-679x(02)00216-5 CrossRefGoogle Scholar
  17. 17.
    Casiraghi, C., Ferrari, A.C., Ohr, R., Flewitt, A.J., Chu, D.P., Robertson, J.: Dynamic roughening of tetrahedral amorphous carbon. Phys. Rev. Lett. 91(22), 226104 (2003)CrossRefGoogle Scholar
  18. 18.
    Casiraghi, C., Robertson, J., Ferrari, A.C.: Diamond-like carbon for data and beer storage. Mater. Today 10(1–2), 44–53 (2007)CrossRefGoogle Scholar
  19. 19.
    Bhushan, B.: Chemical, mechanical and tribological characterization of ultra-thin and hard amorphous carbon coatings as thin as 3.5 nm: recent developments. Diam. Relat. Mater. 8(11), 1985–2015 (1999). doi:10.1016/s0925-9635(99)00158-2 CrossRefGoogle Scholar
  20. 20.
    Li, D.J., Guruz, M.U., Bhatia, C.S., Chung, Y.-W.: Ultrathin CNx overcoats for 1 Tb/in2 hard disk drive systems. Appl. Phys. Lett. 81(6), 1113–1115 (2002). doi:10.1063/1.1498866 CrossRefGoogle Scholar
  21. 21.
    Shum, P.W., Zhou, Z.F., Li, K.Y.: Tribological performance of amorphous carbon films prepared on steel substrates with carbon implantation pre-treatment. Wear 256(3–4), 362–373 (2004). doi:10.1016/s0043-1648(03)00441-1 CrossRefGoogle Scholar
  22. 22.
    Tong, H.H., Monteiro, O.R., Brown, I.G.: Effects of carbon ion pre-implantation on the mechanical properties of ta-C coatings on Ti-6Al-4V. Surf. Coat. Technol. 136(1–3), 211–216 (2001). doi:10.1016/s0257-8972(00)01058-6 CrossRefGoogle Scholar
  23. 23.
    Park, C.K., Chang, S.M., Uhm, H.S., Seo, S.H., Park, J.S.: XPS and XRR studies on microstructures and interfaces of DLC films deposited by FCVA method. Thin Solid Films 420–421, 235–240 (2002). doi:10.1016/s0040-6090(02)00750-2 CrossRefGoogle Scholar
  24. 24.
    Meyerson, B.S., Joshi, R.V., Rosenberg, R., Patel, V.V.: Silicon/carbon protection of metallic magnetic structures. US Patent 4647494Google Scholar
  25. 25.
    Komvopoulos, K., Zhang, H., Bhatia, C.S.: Systems and methods for surface modification by filtered cathodic vacuum arc. US Patent aplication 20100190036Google Scholar
  26. 26.
    Han, H., Ryan, F., McClure, M.: Ultra-thin tetrahedral amorphous carbon film as slider overcoat for high areal density magnetic recording. Surf. Coat. Technol. 120–121, 579–584 (1999). doi:10.1016/s0257-8972(99)00448-x CrossRefGoogle Scholar
  27. 27.
    Rismani, E., Sinha, S.K., Tripathy, S., Yang, H., Bhatia, C.S.: Effect of pre-treatment of the substrate surface by energetic C+ ion bombardment on structure and nano-tribological characteristics of ultra-thin tetrahedral amorphous carbon (ta-C) protective coatings. J. Phys. D Appl. Phys. 44(11), 115502 (2011). doi:10.1088/0022-3727/44/11/115502 CrossRefGoogle Scholar
  28. 28.
    Rismani, E., Sinha, S. K., Yang, H., and Bhatia, C. S.: Effect of pre-treatment of Si interlayer by energetic C+ ions on the improved tribo-mechanical properties of magnetic head overcoat. J. Appl. Phys. (2012). doi:10.1063/1.3699058
  29. 29.
    Anders, A.: Cathodic arcs: from fractal spots to energetic condensation. Springer Science, New York (2008)Google Scholar
  30. 30.
    Carlson, T.A.: Photoelectron and Auger Spectroscopy. Plenum Press, New York (1975)Google Scholar
  31. 31.
    Hedberg, C.L.: Handbook of auger electron spectroscopy. Physical Electronics, IncGoogle Scholar
  32. 32.
    Robertson, J.: Deposition mechanisms for promoting sp3 bonding in diamond-like carbon. Diam. Relat. Mater. 2(5–7), 984–989 (1993). doi:10.1016/0925-9635(93)90262-z CrossRefGoogle Scholar
  33. 33.
    Catledge, S., Vaid, R., Diggins, P., Weimer, J., Koopman, M., Vohra, Y.: Improved adhesion of ultra-hard carbon films on cobalt–chromium orthopaedic implant alloy. J. Mater. Sci. Mater. Med. 22(2), 307–316 (2011). doi:10.1007/s10856-010-4207-1 CrossRefGoogle Scholar
  34. 34.
    Tang, Y., Li, Y.S., Zhang, C.Z., Wang, J., Yang, Q., Hirose, A.: Synthesis of cobalt/diamond-like carbon thin films by biased target ion beam deposition. Diam. Relat. Mater. 20(4), 538–541 (2011). doi:10.1016/j.diamond.2011.02.014 CrossRefGoogle Scholar
  35. 35.
    Correa, S.A., Marmitt, G.G., Bom, N.M., da Rosa, A.T., Stedile, F.C., Radtke, C., Soares, G.V., Baumvol, I.J.R., Krug, C., Gobbi, A.L.: Enhancement in interface robustness regarding thermal oxidation in nanostructured Al2O3 deposited on 4H–SiC. Appl. Phys. Lett. 95(5), 051913–051916 (2009). doi:10.1063/1.3195702 CrossRefGoogle Scholar
  36. 36.
    Klein, T.M., Niu, D., Epling, W.S., Li, W., Maher, D.M., Hobbs, C.C., Hegde, R.I., Baumvol, I.J.R., Parsons, G.N.: Evidence of aluminum silicate formation during chemical vapor deposition of amorphous Al2O3 thin films on Si(100). Appl. Phys. Lett. 75(25), 4001–4003 (1999). doi:10.1063/1.125519 CrossRefGoogle Scholar
  37. 37.
    Prabhakaran, V., Talke, F.E.: Wear and hardness of carbon overcoats on magnetic recording sliders. Wear 243(1–2), 18–24 (2000). doi:10.1016/s0043-1648(00)00392-6 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ehsan Rismani
    • 1
  • S. K. Sinha
    • 1
  • H. Yang
    • 2
  • S. Tripathy
    • 3
  • C. S. Bhatia
    • 2
  1. 1.Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore
  2. 2.Department of Electrical and Computer EngineeringNational University of SingaporeSingaporeSingapore
  3. 3.Institute of Material Research and Engineering (IMRE), A*STAR (Agency for Science, Technology, and Research), 3 Research LinkSingaporeSingapore

Personalised recommendations