Tribology Letters

, Volume 48, Issue 1, pp 63–75 | Cite as

Thermodynamic Theory of Two Rough Surfaces Friction in the Boundary Lubrication Mode

  • Iakov A. LyashenkoEmail author
  • Alexei V. Khomenko
Original Paper


The thermodynamic theory of thin lubricant film melting, confined between two hard rough solid surfaces, is built using the Landau phase transition approach. For the description of a melting condition, the order parameter is introduced which is a periodical part of microscopic medium density function. The shear modulus of lubricant is proportional to the order parameter squared. The thermodynamic and shear melting are described consistently. A mechanical analogue of a tribological system in the boundary friction mode is studied. The time dependencies of the friction force, the relative velocity of the interacting surfaces, and the elastic component of the shear stresses appearing in the lubricant are obtained. It is shown that the shear modulus of the lubricant and the elastic stresses become zero in the liquid-like state. The irregular stick-slip mode of melting is described, which is observed in experiments. It is shown that the frequency of stiction spikes in the irregular mode increases with growth of the shear velocity. Comparison of the obtained results with experimental data is carried out.


Nanotribology Boundary lubrication friction Friction mechanisms Stick-slip 



We express our gratitude to Bo N.J. Persson for the discussion of the study and for invitation to the Forschungszentrum Jülich (Germany) with a research visit, during which this study was carried out. We thank the organizers of conference “Joint ICTP-FANAS Conference on Trends in Nanotribology” (12-16 September 2011, Miramare, Trieste-Italy) for invitation and financial support of participation. We are grateful to Maya Sinitsa and Kyrill Zakharov for attentive reading and correction of the manuscript.


  1. 1.
    Persson, B.N.J.: Sliding Friction. Physical Principles and Applications. Springer-Verlag, Berlin (1998)Google Scholar
  2. 2.
    Popov, V.L.: Kontaktmechanik und Reibung. Ein Lehr- und Anwendungsbuch von der Nanotribologie bis zur numerischen Simulation. Springer, Berlin (2009)Google Scholar
  3. 3.
    Yoshizawa, H., Chen, Y.-L., Israelachvili, J.: Fundamental mechanisms of interfacial friction. 1. Relation between adhesion and friction. J. Phys. Chem. 97, 4128–4140 (1993)CrossRefGoogle Scholar
  4. 4.
    Yoshizawa, H., Israelachvili, J.: Fundamental mechanisms of interfacial friction. 2. Stick-slip friction of spherical and chain molecules. J. Phys. Chem. 97, 11300–11313 (1993)CrossRefGoogle Scholar
  5. 5.
    Lyashenko, I.A.: Tribological properties of dry, fluid, and boundary friction. Tech. Phys. 56, 701–707 (2011)CrossRefGoogle Scholar
  6. 6.
    Popov, V.L.: Thermodynamics and kinetics of shear-induced melting of a thin layer of lubricant confined between solids. Tech. Phys. 46, 605–615 (2001)CrossRefGoogle Scholar
  7. 7.
    Lyashenko, I.A.: Tribological system in the boundary friction mode under a periodic external action. Tech. Phys. 56, 869–876 (2011)CrossRefGoogle Scholar
  8. 8.
    Khomenko, A.V., Lyashenko, I.A.: Melting of ultrathin lubricant film due to dissipative heating of friction surfaces. Tech. Phys. 52, 1239–1243 (2007)CrossRefGoogle Scholar
  9. 9.
    Khomenko, A.V, Lyashenko, I.A., Borisyuk, V.N.: Self-similar phase dynamics of boundary friction. Ukr. J. Phys. 54, 1139–1148 (2009)Google Scholar
  10. 10.
    Braun, O.M., Naumovets, A.G.: Nanotribology: microscopic mechanisms of friction. Surf. Sci. Rep. 60, 79–158 (2006)CrossRefGoogle Scholar
  11. 11.
    Benassi, A., Vanossi, A., Santoro, G.E., Tosatti, E.: Parameter-free dissipation in simulated sliding friction. Phys. Rev. B 82, 081401–4 (2010)CrossRefGoogle Scholar
  12. 12.
    Khomenko, A.V., Prodanov, N.V.: Molecular dynamics of cleavage and flake formation during the interaction of a graphite surface with a rigid nanoasperity. Carbon 48, 1234–1243 (2010)CrossRefGoogle Scholar
  13. 13.
    Voisin, C., Renard, F., Grasso, J.-R.: Long term friction: from stick-slip to stable sliding. Geophys. Res. Lett. 34, L13301–5 (2007)CrossRefGoogle Scholar
  14. 14.
    Filippov, A.E., Klafter, J., Urbakh, M.: Friction through dynamical formation and rupture of molecular bonds. Phys. Rev. Lett. 92, 135503–4 (2004)CrossRefGoogle Scholar
  15. 15.
    Demirel, A.L., Granick, S.: Transition from static to kinetic friction in a model lubricating system. J. Chem. Phys. 109, 6889–6897 (1998)CrossRefGoogle Scholar
  16. 16.
    Pogrebnyak, A.D., Bratushka, S.N., Il’yashenko, M.V., Makhmudov, N.A., Kolisnichenko, O.V., Tyurin, Yu.N., Uglov, V.V., Pshik, A.V., Kaverin, M.V.: Tribological and physical-mechanical properties of protective coatings from Ni-Cr-B-Si-Fe/WC-Co-Cr before and after fission with a plasma jet. J. Frict. Wear 32, 84–90 (2011)CrossRefGoogle Scholar
  17. 17.
    Landau, L.D., Lifshitz, E.M.: Course of Theoretical Physics, Vol.5: Statistical Physics. Butterworth, London (1999)Google Scholar
  18. 18.
    Popov, V.L.: A theory of the transition from static to kinetic friction in boundary lubrication layers. Solid State Commun. 115, 369–373 (2000)CrossRefGoogle Scholar
  19. 19.
    Luengo, G., Israelachvili, J., Granick, S.: Generalized effects in confined fluids: new friction map for boundary lubrication. Wear 200, 328–335 (1996)CrossRefGoogle Scholar
  20. 20.
    Braun, O.M., Manini, N., Tosatti, E.: Role of lubricant molecular shape in microscopic friction. Phys. Rev. B 78, 195402–10 (2008)CrossRefGoogle Scholar
  21. 21.
    Aranson, I.S., Tsimring, L.S., Vinokur, V.M.: Stick-slip friction and nucleation dynamics of ultrathin liquid films. Phys. Rev. B 65, 125402–7 (2002)CrossRefGoogle Scholar
  22. 22.
    Khomenko, A.V., Lyashenko, I.A.: Hysteresis phenomena during melting of an ultrathin lubricant film. Phys. Solid State 49, 936–940 (2007)CrossRefGoogle Scholar
  23. 23.
    Lyashenko, I.A., Khomenko, A.V., Metlov, L.S.: Thermodynamics and kinetics of boundary friction. Tribol. Int. 44, 476–482 (2011)CrossRefGoogle Scholar
  24. 24.
    Lyashenko, I.A., Khomenko, A.V., Metlov, L.S.: Nonlinear thermodynamic model of boundary friction. J. Frict. Wear 32, 113–123 (2011)CrossRefGoogle Scholar
  25. 25.
    Brener, E.A., Marchenko, V.I.: Frictional shear cracks. JETP Lett. 76, 211–214 (2002)CrossRefGoogle Scholar
  26. 26.
    Reiter, G., Demirel, A.L., Peanasky, J., Cai, L.L., Granick, S.: Stick to slip transition and adhesion of lubricated surfaces in moving contact. J. Chem. Phys. 101, 2606–2615 (1994)CrossRefGoogle Scholar
  27. 27.
    Hohenberg, P.C., Halperin, B.I.: Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435–479 (1977)CrossRefGoogle Scholar
  28. 28.
    Landau, L.D., Khalatnikov, I.M.: On the anomalous absorption of sound near a second-order phase transition point. Dokl. Akad. Nauk SSSR 96, 469–472 (1954) (see also: Collected Papers of L.D. Landau, edited by D. ter Haar. Pergamon, London (1965))Google Scholar
  29. 29.
    He, G., Robbins, M.O.: Simulations of the static friction due to adsorbed molecules. Phys. Rev. B 64, 035413–13 (2001)CrossRefGoogle Scholar
  30. 30.
    Lyashenko, I.A.: First-order phase transition between the liquidlike and solidlike structures of a boundary lubricant. Tech. Phys. 57, 17–26 (2012)CrossRefGoogle Scholar
  31. 31.
    Israelachvili, J.N.: Adhesion forces between surfaces in liquids and condensable vapours. Surf. Sci. Rep. 14, 109–159 (1992)CrossRefGoogle Scholar
  32. 32.
    Gardiner, C.W.: Handbook of Stochastic Methods. Springer, Berlin (1983)Google Scholar
  33. 33.
    Khomenko, A.V., Lyashenko, I.A.: Phase dynamics and kinetics of thin lubricant film driven by correlated temperature fluctuations. Fluct. Noise Lett. 7, L111–L133 (2007)CrossRefGoogle Scholar
  34. 34.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, New York (1992)Google Scholar
  35. 35.
    Khomenko, A.V., Lyashenko, I.A.: Stochastic theory of ultrathin lubricant film melting in the stick-slip regime. Tech. Phys. 50, 1408–1416 (2005)CrossRefGoogle Scholar
  36. 36.
    Khomenko, A.V., Lyashenko, I.A., Borisyuk, V.N.: Multifractal analysis of stress time series during ultrathin lubricant film melting. Fluct. Noise Lett. 9, 19–35 (2010)CrossRefGoogle Scholar
  37. 37.
    Khomenko, A.V., Lyashenko, Y.A.: Periodic intermittent regime of a boundary flow. Tech. Phys. 55, 26–32 (2010)CrossRefGoogle Scholar
  38. 38.
    Bonelli, F., Manini, N., Cadelano, E., Colombo, L.: Atomistic simulations of the sliding friction of graphene flakes. Eur. Phys. J. B 70, 449–460 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Peter Grunberg Institut, Forschungszentrum JülichJülichGermany
  2. 2.Sumy State UniversitySumyUkraine

Personalised recommendations