Tribology Letters

, Volume 46, Issue 2, pp 101–112

Crystal Plasticity Finite Modelling of 3D Surface Asperity Flattening in Uniaxial Planar Compression

Original Paper


Rate-dependent crystal plasticity constitutive model has been employed into finite element software ABAQUS to simulate surface asperity flattening in uniaxial planar compression. Measured textures and surface roughness are introduced into the 3D surface roughness model. The calculated results show a good agreement with the experimental results. With an increase of reduction, the surface asperity flattening tends to increase, and Goss texture {011} 〈100〉 and brass component {110} 〈112〉 become stronger, whilst the cubic texture {001} 〈100〉 becomes weaker. If the reduction reaches 40%, Schmid in-grain shear band appears and the strain localisation starts. The evolution of surface feature (roughness) shows the obvious sensitivity on the orientation {111} of near-top surface.


Surface roughness Hardness Modelling Orientation sensitivity 


  1. 1.
    Raabe, D., Sachtleber, M., Weiland, H., Scheele, G., Zhao, Z.S.: Grain-scale micromechanics of polycrystal surfaces during plastic straining. Acta Mater. 51, 1539–1560 (2003)CrossRefGoogle Scholar
  2. 2.
    Osakada, K., Oyane, M.: On the roughing of free surface in deformation process. Bull. JSME 14, 171–177 (1971)CrossRefGoogle Scholar
  3. 3.
    Tokizawa, M., Yosikawa, Y.: The mechanism of lubricant trapping under the cold compression of metals. J. Jpn. Inst. Met. 37, 19–25 (1973)Google Scholar
  4. 4.
    Chen, G., Shen, H., Hu, S., Baudelet, B.: Roughening of the free surfaces of metalic sheets during stretching forming. Mat. Sci. Eng. A 128, 33–38 (1990)CrossRefGoogle Scholar
  5. 5.
    Becker, R.: Effect of strain localization on surface roughening during sheet forming. Acta Metall. 46, 1385–1401 (1998)Google Scholar
  6. 6.
    Stoudt, M.R., Ricker, R.E.: The Relationship between grain size and the surface roughening behaviour of Al-Mg alloys. Metall. Mater. Trans. A 33, 2883–2889 (2002)CrossRefGoogle Scholar
  7. 7.
    Sheu, S., Wilson, W.R.D.: Flattening of workpiece surface asperities in metal forming. In: Proceedings of 11th North American Manufacturing Research Conference, pp. 172–178 (1983)Google Scholar
  8. 8.
    Wilson, W.R.D., Lee, W.M.: Mechanics of surface roughening in metal forming process. J. Manuf. Sci. Eng. 123, 279–283 (2001)CrossRefGoogle Scholar
  9. 9.
    Makinouchi, A., Ike, H., Murakawa, M., Koga, N.: A finite element analysis of flattening of surface asperities by perfectly lubricated rigid dies in metal working processes. Wear 128, 109–122 (1988)CrossRefGoogle Scholar
  10. 10.
    Sutcliffe, M.P.F.: Surface asperity deformation in metal forming processes. Int. J. Mech. Sci. 11, 847–868 (1988)CrossRefGoogle Scholar
  11. 11.
    Dieter, G.E.: Mechanical Metallurgy, 3rd edn. McGraw-Hill, New York (1986)Google Scholar
  12. 12.
    Wilson, W.R.D.: J. Manuf. Sci. Eng. 119, 695–698 (1997)CrossRefGoogle Scholar
  13. 13.
    Groche, P., Schafer, R., Justinger, H., Ludwig, M.: On the correlation between crystallographic grain size and surface evolution in metal forming processes. Int. J. Mech. Sci. 52, 523–530 (2010)CrossRefGoogle Scholar
  14. 14.
    Groche, P., Schafer, R., Henning, M.: Finite element calculation of surface evolution considering grain size and crystallographic texture effects. In: Proceedings of the Third International Conference on Tribology in Manufacturing Processes, ICTMP2007, pp. 219–226. Yokohama National University, Yokohama (2007)Google Scholar
  15. 15.
    Li, H.J., Jiang, Z.Y., Wei, D.B., Han, J.T., Tieu, A.K.: Study on surface asperity flattening during uniaxial planar compression. Wear 271, 1778–1784 (2011)CrossRefGoogle Scholar
  16. 16.
    Li, H.J., Jiang, Z.Y., Wei, D.B., Yan, P.J., Tieu, A.K., Han, J.T.: Crystal plasticity finite element modeling of surface asperity flattening during uniaxial planar compression. International Conference on Tribology in Manufacturing Processes, pp. 397–406 (2010)Google Scholar
  17. 17.
    Asaro, R.J., Needleman, A.: Texture development and strain hardening in rate dependent polycrystals. Acta Metall. 33, 923–953 (1985)CrossRefGoogle Scholar
  18. 18.
    Chen, Z.Y.: Modelling of intergrowth deformation of twin and slip in the FCC metal. PhD. Thesis, CSU, Changsha (2002)Google Scholar
  19. 19.
    Kalidindi, S.R., Schoenfeld, S.E.: On the prediction of yield surfaces by the crystal plasticity models for FCC polycrystals. Mater. Sci. Eng. A 293, 120–129 (2000)CrossRefGoogle Scholar
  20. 20.
    Beaudoin, A.J., Dawson, P.R., Mathur, K.K., Kocks, U.F.: A hybrid finite element formulation for polycrystal plasticity with consideration of macrostructural and microstructural linking. Int. J. Plast. 11, 501–521 (1995)CrossRefGoogle Scholar
  21. 21.
    Kalidindi, S.R., Anand, L.: Macroscopic shape change and evolution of crystallographic texture in pre-textured FCC metals. J. Mech. Phys. Solids 42, 459–490 (1994)CrossRefGoogle Scholar
  22. 22.
    Kalidindi, S.R., Anand, L.: An approximate procedure for predicting the evolution of crystallographic texture in bulk deformation processing of FCC metals. Int. J. Mech. Sci. 34, 310–312 (1992)CrossRefGoogle Scholar
  23. 23.
    Kalidindi, S.R., Bronkhorst, C.A., Anand, L.: Crystallographic texture evolution in bulk deformation processing of FCC metals. J. Mech. Phys. Solids 40, 552–555 (1992)CrossRefGoogle Scholar
  24. 24.
    Wu, P.D., Lloyd, D.J.: Modelling surface roughening with crystal plasticity. In: Proceedings of 1st Illinois Section of the Mathematical Association of America, pp. 15–20 (2003)Google Scholar
  25. 25.
    Brandes, E.A.: Smithells Metals Reference Book. The Bath Press, Bath, p. 368 (1999)Google Scholar
  26. 26.
    Asaro, R.J., Needleman, A.: Flow localization in strain hardening crystalline solids. Scr Metall. 18(5), 429–435 (1984)CrossRefGoogle Scholar
  27. 27.
    Pi, H.C., Han, J.T., Zhang, C.G., Tieu, A.K., Jiang, Z.Y.: Modeling uniaxial tensile deformation of polycrystalline Al using CPFEM. J. Univ. Sci. Tech. Beijing Miner. Metall. Mater. 15(1), 43–47 (2008)Google Scholar
  28. 28.
    Li, H.J., Jiang, Z.Y., Wei, D.B., Han, J.T., Tieu, A.K.: Crystal plasticity finite element modeling of the influence of friction on surface roughening during uniaxial planar compression. Mater. Sci. Forum 654656, 1606–1609 (2010)CrossRefGoogle Scholar
  29. 29.
    Hosford, W.F.: The Mechanics of Crystals and Textured Polycrystals, p. 29. Oxford University Press, Oxford (1993)Google Scholar
  30. 30.
    Taylor, G.I.: Plast. Strain Metal. J. Inst. Met. 62, 307–324 (1938)Google Scholar
  31. 31.
    Pi, H.C.: Modeling deformation of cubic metals by crystal plasticity finite element method, PhD. Thesis, USTB, Beijing (2006)Google Scholar
  32. 32.
    Sarma, G.B., Dawson, P.R.: Texture predictions using a polycrystal plasticity model incorporating neighbor interactions. Int. J. Plast. 12, 1023–1054 (1996)CrossRefGoogle Scholar
  33. 33.
    Aicheler, M., Sgobba, S., Arnau-Izquierdo, G., Taborelli, M., Calatroni, S., Neupert, H., Wuensch, W.: Evolution of surface topography in dependence on the grain orientation during surface thermal fatigue of polycrystalline copper. Int. J. Fatigue 33, 396–402 (2011)CrossRefGoogle Scholar
  34. 34.
    Wikstroem, A., Nygards, M.: Anisotropy and texture in thin copper films-anelasto-plastic analysis. Acta Mater. 50, 857–870 (2002)CrossRefGoogle Scholar
  35. 35.
    Baker, S.P., Kretschmann, A., Arzt, E.: Thermo mechanical behavior of different texture components in Cu thin films. Acta Mater. 49, 2145–2160 (2001)CrossRefGoogle Scholar
  36. 36.
    Moenig, R., Park, Y.B., Volkert, C.A.: Thermal fatigue in copper interconnects. In: Proceedings of the 8th International Workshop on Stress-induced Phenomena in Metallization, pp. 147–156 (2005)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.School of Mechanical, Materials and Mechatronic EngineeringUniversity of WollongongWollongongAustralia

Personalised recommendations