Tribology Letters

, Volume 48, Issue 1, pp 27–32 | Cite as

On the Propagation of Slip Fronts at Frictional Interfaces

  • David S. Kammer
  • Vladislav A. Yastrebov
  • Peter Spijker
  • Jean-François Molinari
Original Paper

Abstract

The dynamic initiation of sliding at planar interfaces between deformable and rigid solids is studied with particular focus on the speed of the slip front. Recent experimental results showed a close relation between this speed and the local ratio of shear to normal stress measured before slip occurs (static stress ratio). Using a two-dimensional finite element model, we demonstrate, however, that fronts propagating in different directions do not have the same dynamics under similar stress conditions. A lack of correlation is also observed between accelerating and decelerating slip fronts. These effects cannot be entirely associated with static local stresses but call for a dynamic description. Considering a dynamic stress ratio (measured in front of the slip tip) instead of a static one reduces the above-mentioned inconsistencies. However, the effects of the direction and acceleration are still present. To overcome this, we propose an energetic criterion that uniquely associates, independently on the direction of propagation and its acceleration, the slip front velocity with the relative rise of the energy density at the slip tip.

Keywords

Dynamic modelling Friction mechanisms Contact mechanics Stick–slip Stress analysis 

Notes

Acknowledgments

The authors are grateful to D. Coker for fruitful discussions and N. Richart for helpful advices on the simulations. The research described in this article is supported by the European Research Council (ERCstg UFO-240332).

Reference

  1. 1.
    Blau, P.J.: Friction Science and Technology, 2nd edn. CRC Press, Boca Raton (2009)Google Scholar
  2. 2.
    Xia, K., Rosakis, A.J., Kanamori, H.: Laboratory earthquakes: the sub-Rayleigh-to-supershear rupture transition. Science 303, 1859–1861 (2004)CrossRefGoogle Scholar
  3. 3.
    Coker, D., Lykotrafitis, G., Needleman, A., Rosakis, A.J.: Frictional sliding modes along an interface between identical elastic plates subject to shear impact loading. J. Mech. Phys. Solids 53, 884–922 (2005)CrossRefGoogle Scholar
  4. 4.
    Heaton, T.H.: Evidence for and implications of self-healing pulses of slip in earthquake rupture. Phys. Earth Planet. Inter. 64, 1–20 (1990)CrossRefGoogle Scholar
  5. 5.
    Ben-Zion, Y.: Dynamic ruptures in recent models of earthquake faults. J. Mech. Phys. Solids 49, 2209 (2001)CrossRefGoogle Scholar
  6. 6.
    Scholz, C.H.: The Mechanics of Earthquakes and Faulting, 2nd edn. Cambridge University Press, Cambridge (2002)CrossRefGoogle Scholar
  7. 7.
    Rubinstein, S.M., Cohen, G., Fineberg, J.: Detachment fronts and the onset of dynamic friction. Nature 430, 1005–1009 (2004)CrossRefGoogle Scholar
  8. 8.
    Rubinstein, S., Cohen, G., Fineberg, J.: Dynamics of precursors to frictional sliding. Phys. Rev. Lett. 98, 226103 (2007)CrossRefGoogle Scholar
  9. 9.
    Baumberger, T., Caroli, C., Ronsin, O.: Self-healing slip pulses along a gel/glass interface. Phys. Rev. Lett. 88, 075509 (2002)CrossRefGoogle Scholar
  10. 10.
    Ben-David, O., Cohen, G., Fineberg, J.: The dynamics of the onset of frictional slip. Science 330, 211 (2010)CrossRefGoogle Scholar
  11. 11.
    Braun, O., Barel, I., Urbakh, M.: Dynamics of transition from static to kinetic friction. Phys. Rev. Lett. 103, 194301 (2009)CrossRefGoogle Scholar
  12. 12.
    Maegawa, S., Suzuki, A., Nakano, K.: Precursors of global slip in a longitudinal line contact under non-uniform normal loading. Tribol. Lett. 38, 313 (2010)CrossRefGoogle Scholar
  13. 13.
    Bouchbinder, E., Brener, E., Barel, I., Urbakh, M.: Slow cracklike dynamics at the onset of frictional sliding. Phys. Rev. Lett. 107, 235501 (2011)CrossRefGoogle Scholar
  14. 14.
    Trømborg, J., Scheibert, J., Amundsen, D., Thøgersen, K., Malthe-Sørenssen, A.: Transition from static to kinetic friction: insights from a 2D model. Phys. Rev. Lett. 107, 074301 (2011)CrossRefGoogle Scholar
  15. 15.
    Amundsen, D.S., Scheibert, J., Thøgersen, K., Trømborg, J., Malthe-Sørenssen, A.: 1D model of precursors to frictional stick–slip motion allowing for robust comparison with experiments. Tribol. Lett. 45, 357 (2012)CrossRefGoogle Scholar
  16. 16.
    Di Bartolomeo, M., Meziane, A., Massi, F., Baillet, L., Fregolent, A.: Dynamic rupture at a frictional interface between dissimilar materials with asperities. Tribol. Int. 43, 1620 (2010)CrossRefGoogle Scholar
  17. 17.
    Belytschko, T., Liu, W.K., Moran, B.: Nonlinear Finite Elements for Continua and Structures. Wiley, Chichester (2000)Google Scholar
  18. 18.
    Rayleigh, J.W.S.: The Theory of Sound, vol. 1, 2nd edn. Dover Publications, New York (1945)Google Scholar
  19. 19.
    Caughey, T.K.: Classical normal modes in damped linear dynamic systems. J. Appl. Mech. 27, 269–271 (1960)CrossRefGoogle Scholar
  20. 20.
    Ben-David, O., Fineberg, J.: Static friction coefficient is not a material constant. Phys. Rev. Lett. 106, 254301 (2011)CrossRefGoogle Scholar
  21. 21.
    Scheibert, J., Dysthe, D.K.: Role of friction-induced torque in stick–motion. Europhys. Lett. 92, 54001 (2010)CrossRefGoogle Scholar
  22. 22.
    Coker, D., Rosakis, A.J., Needleman, A.: Dynamic crack growth along a polymer composite–Homalite interface. J. Mech. Phys. Solids 51, 425–460 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • David S. Kammer
    • 1
  • Vladislav A. Yastrebov
    • 1
  • Peter Spijker
    • 1
  • Jean-François Molinari
    • 1
  1. 1.Computational Solid Mechanics LaboratoryEcole Polytechnique Fédérale de Lausanne, EPFL, LSMS, IIC-ENAC, IMX-STILausanneSwitzerland

Personalised recommendations