Tribology Letters

, Volume 46, Issue 1, pp 23–31 | Cite as

Lift-up Hysteresis Butterflies in Friction

  • Farid Al-Bender
  • Kris De Moerlooze
  • Paul Vanherck
Original Paper

Abstract

Charles-Augustin de Coulomb postulated that the act of rubbing of surfaces against each other leads the asperities on the surfaces to deform and mount each other. Thus, in order for tangential motion to ensue, an associated lift-up in the direction normal to the surface, will take place. Although this behavior has been sporadically pointed out in literature, we believe that the butterfly curves associated with it during presliding have not been reported before. We have performed dry, presliding rubbing experiments that show that there is a regular, relative normal displacement associated with the tangential motion; in particular, that normal motion describes rate-independent, hysteresis, butterfly curves (similar in nature to those found in piezo-electric and magnetic materials), in the tangential displacement and in the tangential force, respectively. This communication outlines and explores the basic behavior of those butterfly curves experimentally.

Keywords

Sliding friction Normal dynamics Lift-up Hysteresis Butterfly 

Notes

Acknowledgment

This research is partially sponsored by the Fund for Scientific Research—Flanders (F.W.O.) under Grant FWO4283. The scientific responsibility is assumed by its authors.

References

  1. 1.
    Amontons, G.: On the resistance originating in machines. In: Proceedings of the French Royal Academy of Sciences, pp. 206–222 (1699)Google Scholar
  2. 2.
    Dowson, D.: History of Tribology. Longman, London (1979)Google Scholar
  3. 3.
    Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids. Clarendon Press, Oxford (1950)Google Scholar
  4. 4.
    Johnson, K.L., Kendall, K., Roberts, A.D.: Surface Energy and the Contact of Elastic Solids. Proc. R. Soc. Lond. Math. Phys. Sci. 324, 301–313 (1970)CrossRefGoogle Scholar
  5. 5.
    Derjaguin, B.V., Muller, V.M., Toporov, Y.V.: Effect of contact deformations on the adhesion of particles. J. Colloid Interf. Sci. 53(2), 314–326 (1975)CrossRefGoogle Scholar
  6. 6.
    Maugis, D.: Adhesion of spheres: the JKR-DMT transition using a Dugdale model. J. Colloid Interf. Sci. 150(1), 243–269 (1992)CrossRefGoogle Scholar
  7. 7.
    Tolstoi, D.M.: Significance of the normal degree of freedom and the natural normal vibrations in contact friction. Wear 10(3), 199–213 (1967)CrossRefGoogle Scholar
  8. 8.
    Gitis, N.V., Volpe, L.: Nature of static friction time dependence. J. Phys. D: Appl. Phys. 25(4), 605–612 (1992)CrossRefGoogle Scholar
  9. 9.
    Oden, J.T., Martins, J.A.C.: Models and computational methods for dynamic friction phenomena. Comput. Methods Appl. Mech. Eng. 52(1–3), 528–634 (1985)Google Scholar
  10. 10.
    Al-Bender, F., Lampaert, V., Swevers, J.: A novel generic model at asperity level for dry friction force dynamics. Tribol. Lett. 16(1), 81–93 (2004)CrossRefGoogle Scholar
  11. 11.
    De Moerlooze, K., Al-Bender, F., Van Brussel, H.: A generalised asperity-based friction model. Tribol. Lett. 40(1), 113–130 (2010)CrossRefGoogle Scholar
  12. 12.
    Wang, Z., Suryavanshi, A.P., Yu, M.-F.: Ferroelectric and piezoelectric behaviors of individual single crystalline BaTiO3 nanowire under direct axial electric biasing. Appl. Phys. Lett. 89, 1–3 (2006)Google Scholar
  13. 13.
    Li, F.-X., Li, S., Fang, D.-N.: Domain switching in ferroelectric single crystal/ceramics under electromagnetic loading. Mater. Sci. Eng. B 120, 119–124 (2005)CrossRefGoogle Scholar
  14. 14.
    Pietzsch, O., Kubetzka, A., Mode, M., Wiesendanger, R.: Observation of magnetic hysteresis ant the nanometer scale by spin-polarized scanning tunneling spectroscopy. Science 292, 2053–2056 (2001)CrossRefGoogle Scholar
  15. 15.
    Bienkowski, A., Kaczkowski, Z.: Major and minor magnetorestriction hysteresis loops on Co–Ci–Ni ferrite. J. Magn. Magn. Mater. 215(216), 234–236 (2000)CrossRefGoogle Scholar
  16. 16.
    Zivkovic, I., Drobac, D., Prester, M.: Two component butterfly hysteresis in RuSr2EuCeCu2O10. Physica C 433, 234–239 (2006)CrossRefGoogle Scholar
  17. 17.
    Sojoudi, H., Khonsari, M.M.: On the modeling of quasi-steady and unsteady dynamic friction in sliding lubricated line contact. ASME J. Tribol. 132(1), 012101 (2010)Google Scholar
  18. 18.
    Lampaert, V., Al-Bender, F., Swevers, J.: Experimental characterisation of dry friction at low velocities on a developed tribometer setup for macroscopic measurements. Tribol. Lett. 16(1–2), 95–105 (2004)CrossRefGoogle Scholar
  19. 19.
    Tomlinson, G.A.: A molecular theory of friction. Philos. Mag. 7(7), 905–939 (1929)Google Scholar
  20. 20.
    Iwan, W.D.: A distributed-element model for hysteresis and its steady-state dynamic response. J. Appl. Mech. 33(4), 893–900 (1966)CrossRefGoogle Scholar
  21. 21.
    Al-Bender, F., Lampaert, V., Swevers, J.: Modeling of dry sliding friction dynamics: from heuristic models to physically motivated models and back. Chaos 14(2), 446–460 (2004)CrossRefGoogle Scholar
  22. 22.
    Al-Bender, F., Lampaert, V., Swevers, J.: The generalized maxwell-slip model: a novel model for friction simulation and compensation. IEEE Trans. Autom. Control 50(11), 1883–1887 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Farid Al-Bender
    • 1
  • Kris De Moerlooze
    • 1
  • Paul Vanherck
    • 1
  1. 1.Division of PMA, Department of Mechanical EngineeringKatholieke Universiteit LeuvenHeverleeBelgium

Personalised recommendations