Advertisement

Tribology Letters

, Volume 50, Issue 1, pp 81–93 | Cite as

The Effect of Atomic-Scale Roughness on the Adhesion of Nanoscale Asperities: A Combined Simulation and Experimental Investigation

  • Tevis D. B. Jacobs
  • Kathleen E. Ryan
  • Pamela L. Keating
  • David S. Grierson
  • Joel A. Lefever
  • Kevin T. Turner
  • Judith A. Harrison
  • Robert W. CarpickEmail author
Original Paper

Abstract

The effect of atomic-scale roughness on adhesion between carbon-based materials is examined by both simulations and experimental techniques. Nanoscale asperities composed of either diamond-like carbon or ultrananocrystalline diamond are brought into contact and then separated from diamond surfaces using both molecular dynamics simulations and in situ transmission electron microscope (TEM)-based nanoindentation. Both techniques allow for characterization of the roughness of the sharp nanoasperities immediately before and after contact down to the subnanometer scale. The root mean square roughness for the simulated tips spanned 0.03 nm (atomic corrugation) to 0.12 nm; for the experimental tips, the range was 0.18–1.58 nm. Over the tested range of roughness, the measured work of adhesion was found to decrease by more than an order of magnitude as the roughness increased. The dependence of adhesion upon roughness was accurately described using a simple analytical model. This combination of simulation and experimental methodologies allows for an exploration of an unprecedented range of tip sizes and length scales for roughness, while also verifying consistency of the results between the techniques. Collectively, these results demonstrate the high sensitivity of adhesion to interfacial roughness down to the atomic limit. Furthermore, they indicate that care must be taken when attempting to extract work of adhesion values from experimental measurements of adhesion forces.

Keywords

Adhesion Surface roughness In situ TEM Molecular dynamics simulation Nanotribology AFM Diamond Diamond-like carbon 

Notes

Acknowledgments

The authors wish to thank Dr. Doug Yates and Dr. Ryan Major for microscopy and equipment assistance, and Prof. Mark O. Robbins for helpful discussions. The authors thank Graham E. Wabiszewski for assistance performing AFM on the indenter tip. Use of the facilities of the Pennsylvania Regional Nanotechnology Facility is acknowledged. The authors acknowledge funding from the National Science Foundation under the following Grants: CMMI 0826076 (RWC); IGERT DGE 0221664 (TDBJ); DMR 1120901 (RWC); CMMI 0845294 (KTT); CMMI 0825981 (JAH, PLK, KER); CMMI 1200019 (KTT, RWC); CMMI 1200011 (JAH); and IAA 1129629 (JAH, PLK, KER). KER and PLK also acknowledge partial support from the Office of Naval Research through the US Naval Academy. The support of AFOSR under Contract No. FA2386-11-1-4105 AOARD is also acknowledged (RWC).

Supplementary material

11249_2012_97_MOESM1_ESM.mpg (4.2 mb)
Supplementary material 1 (MPG 4320 kb)

Supplementary material 2 (MOV 225558 kb)

References

  1. 1.
    Israelachvili, J.N.: Intermolecular and Surface Forces, 3rd edn. Elsevier, San Francisco (2010)Google Scholar
  2. 2.
    Derjaguin, B.V., Muller, V., Toporov, Y.P.: Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53, 314–326 (1975)CrossRefGoogle Scholar
  3. 3.
    Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A 324, 301–313 (1971)CrossRefGoogle Scholar
  4. 4.
    Maugis, D.: Adhesion of spheres: the JKR-DMT transition using a Dugdale model. J. Colloid Interface Sci. 150, 243–269 (1992)CrossRefGoogle Scholar
  5. 5.
    Volinsky, A.A., Moody, N.R., Gerberich, W.W.: Interfacial toughness measurements for thin films on substrates. Acta Mater. 50, 441–466 (2002)CrossRefGoogle Scholar
  6. 6.
    Gao, H., Wang, X., Yao, H., Gorb, S., et al.: Mechanics of hierarchical adhesion structures of geckos. Mech. Mater. 37, 275–285 (2005)CrossRefGoogle Scholar
  7. 7.
    Finnis, M.W.: The theory of metal-ceramic interfaces. J. Phys. Condens. Matter 8, 5811 (1999)CrossRefGoogle Scholar
  8. 8.
    Maboudian, R.: Critical review: adhesion in surface micromechanical structures. J. Vac. Sci. Technol. B 15, 1 (1997)CrossRefGoogle Scholar
  9. 9.
    Grierson, D., Flater, E., Carpick, R.: Accounting for the JKR-DMT transition in adhesion and friction measurements with atomic force microscopy. J. Adhes. Sci. Technol. 19, 291–311 (2005)CrossRefGoogle Scholar
  10. 10.
    Fuller, K., Tabor, D.: Effect of surface-roughness on adhesion of elastic solids. Proc. R. Soc. Lond. A 345, 327–342 (1975)CrossRefGoogle Scholar
  11. 11.
    DelRio, F.W., de Boer, M.P., Knapp, J.A., Reedy, E.D., et al.: The role of van der Waals forces in adhesion of micromachined surfaces. Nat. Mater. 4, 629–634 (2005)CrossRefGoogle Scholar
  12. 12.
    Tayebi, N., Polycarpou, A.A.: Reducing the effects of adhesion and friction in microelectromechanical systems (MEMSs) through surface roughening: comparison between theory and experiments. J. Appl. Phys. 98, 073528 (2005)CrossRefGoogle Scholar
  13. 13.
    Ramakrishna, S.N., Clasohm, L.Y., Rao, A., Spencer, N.D.: Controlling adhesion force by means of nanoscale surface roughness. Langmuir 27, 9972–9978 (2011)CrossRefGoogle Scholar
  14. 14.
    Segeren, L., Siebum, B., Karssenberg, F.G., Van den Berg, J., et al.: Microparticle adhesion studies by atomic force microscopy. J. Adhes. Sci. Technol. 16, 793–828 (2002)CrossRefGoogle Scholar
  15. 15.
    Katainen, J., Paajanen, M., Ahtola, E., Pore, V., et al.: Adhesion as an interplay between particle size and surface roughness. J. Colloid Interface Sci. 304, 524–529 (2006)CrossRefGoogle Scholar
  16. 16.
    Liu, D.L., Martin, J., Burnham, N.A.: Which fractal parameter contributes most to adhesion? J. Adhes. Sci. Technol. 24, 2383–2396 (2010)CrossRefGoogle Scholar
  17. 17.
    Greenwood, J., Williamson, J.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. A 295, 300–319 (1966)CrossRefGoogle Scholar
  18. 18.
    Maugis, D.: On the contact and adhesion of rough surfaces. J. Adhes. Sci. Technol. 10, 161–175 (1996)CrossRefGoogle Scholar
  19. 19.
    Peressadko, A., Hosoda, N., Persson, B.: Influence of surface roughness on adhesion between elastic bodies. Phys. Rev. Lett. 95, 124301 (2005)CrossRefGoogle Scholar
  20. 20.
    Rumpf, H.: Particle Technology. Chapman and Hall, London (1990)CrossRefGoogle Scholar
  21. 21.
    Rabinovich, Y.: Adhesion between nanoscale rough surfaces I. Role of asperity geometry. J. Colloid Interface Sci. 232, 10–16 (2000)CrossRefGoogle Scholar
  22. 22.
    Mulakaluri, N., Persson, B.: Adhesion between elastic solids with randomly rough surfaces: comparison of analytical theory with molecular-dynamics simulations. Europhys. Lett. 96, 66003 (2011)CrossRefGoogle Scholar
  23. 23.
    Luan, B., Robbins, M.: Contact of single asperities with varying adhesion: comparing continuum mechanics to atomistic simulations. Phys. Rev. E 74, 026111 (2006)CrossRefGoogle Scholar
  24. 24.
    Piotrowski, P.L., Cannara, R.J., Gao, G., Urban, J.J., et al.: Atomistic factors governing adhesion between diamond, amorphous carbon and model diamond nanocomposite surfaces. J. Adhes. Sci. Technol. 24, 2471–2498 (2010)CrossRefGoogle Scholar
  25. 25.
    Liu, J., Grierson, D., Moldovan, N., Notbohm, J., et al.: Preventing nanoscale wear of atomic force microscopy tips through the use of monolithic ultrananocrystalline diamond probes. Small 6, 1140–1149 (2010)CrossRefGoogle Scholar
  26. 26.
    Goglia, P.R., Berkowitz, J., Hoehn, J., Xidis, A., et al.: Diamond-like carbon applications in high density hard disc recording heads. Diam. Relat. Mater. 10, 271–277 (2001)CrossRefGoogle Scholar
  27. 27.
    Krauss, A.R., Auciello, O., Gruen, D.M., Jayatissa, A., et al.: Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices. Diam. Relat. Mater. 10, 1952–1961 (2001)CrossRefGoogle Scholar
  28. 28.
    Greenwood, J.: Adhesion of elastic spheres. Proc. R. Soc. Lond. A 453, 1277–1297 (1997)CrossRefGoogle Scholar
  29. 29.
    Yu, N., Polycarpou, A.A.: Adhesive contact based on the Lennard–Jones potential: a correction to the value of the equilibrium distance as used in the potential. J. Colloid Interface Sci. 278, 428–435 (2004)CrossRefGoogle Scholar
  30. 30.
    Johnson, K.L.: Contact Mechanics. Cambridge University Press, London (2011)Google Scholar
  31. 31.
    Adelman, S.A.: Generalized Langevin equation approach for atom/solid-surface scattering: general formulation for classical scattering off harmonic solids. J. Chem. Phys. 64, 2375 (1976)CrossRefGoogle Scholar
  32. 32.
    Auciello, O., Birrell, J., Carlisle, J.A., Gerbi, J.E., et al.: Materials science and fabrication processes for a new MEMS technology based on ultrananocrystalline diamond thin films. J. Phys. Condens. Matter 16, R539–R552 (2004)CrossRefGoogle Scholar
  33. 33.
    Stuart, S., Tutein, A., Harrison, J.: A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472–6486 (2000)CrossRefGoogle Scholar
  34. 34.
    LAMMPS Molecular Dynamics Simulator. http://lammps.sandia.gov/
  35. 35.
    Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 117, 1–19 (1995)CrossRefGoogle Scholar
  36. 36.
    Brenner, D.W., Shenderova, O.A., Harrison, J.A., Stuart, S.J., et al.: A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter 14, 783–802 (2002)CrossRefGoogle Scholar
  37. 37.
    Harrison, J.A., Schall, J.D., Knippenberg, M.T., Gao, G., et al.: Elucidating atomic-scale friction using molecular dynamics and specialized analysis techniques. J. Phys. Condens. Matter 20, 354009 (2008)CrossRefGoogle Scholar
  38. 38.
    Mikulski, P.T., Gao, G., Chateauneuf, G.M., Harrison, J.A.: Contact forces at the sliding interface: mixed versus pure model alkane monolayers. J. Chem. Phys. 122, 024701 (2005)CrossRefGoogle Scholar
  39. 39.
    Knippenberg, M., Mikulski, P., Dunlap, B., Harrison, J.: Atomic contributions to friction and load for tip–self-assembled monolayers interactions. Phys. Rev. B 78, 235409 (2008)CrossRefGoogle Scholar
  40. 40.
    Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)CrossRefGoogle Scholar
  41. 41.
    Sumant, A.V., Grierson, D.S., Gerbi, J.E., Carlisle, J.A., et al.: Surface chemistry and bonding configuration of ultrananocrystalline diamond surfaces and their effects on nanotribological properties. Phys. Rev. B. 76, 235429 (2007)CrossRefGoogle Scholar
  42. 42.
    Liu, J., Grierson, D.S., Sridharan, K., Carpick, R.W., et al.: Assessment of the mechanical integrity of silicon and diamond-like-carbon coated silicon atomic force microscope probes. In: Proceedings of the SPIE–The International Society for Optical Engineering, vol. 7767, p. 776708 (2010)Google Scholar
  43. 43.
    Bares, J.A., Sumant, A.V., Grierson, D.S., Carpick, R.W., et al.: Small amplitude reciprocating wear performance of diamond-like carbon films: dependence of film composition and counterface material. Tribol. Lett. 27, 79–88 (2007)CrossRefGoogle Scholar
  44. 44.
    Fletcher, P.C., Felts, J.R., Dai, Z., Jacobs, T.D., et al.: Wear-resistant diamond nanoprobe tips with integrated silicon heater for tip-based nanomanufacturing. Am. Chem. Soc. Nano 4, 3338–3344 (2010)Google Scholar
  45. 45.
    Sader, J., Chon, J., Mulvaney, P.: Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 70, 3967–3969 (1999)CrossRefGoogle Scholar
  46. 46.
    Szlufarska, I., Chandross, M., Carpick, R.W.: Recent advances in single-asperity nanotribology. J. Phys. D-Appl. Phys. 41, 123001 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Tevis D. B. Jacobs
    • 1
  • Kathleen E. Ryan
    • 2
  • Pamela L. Keating
    • 2
  • David S. Grierson
    • 3
  • Joel A. Lefever
    • 1
  • Kevin T. Turner
    • 4
  • Judith A. Harrison
    • 2
  • Robert W. Carpick
    • 4
    Email author
  1. 1.Department of Materials Science & EngineeringUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of ChemistryUnited States Naval AcademyAnnapolisUSA
  3. 3.systeMECH, LLCMadisonUSA
  4. 4.Department of Mechanical Engineering & Applied MechanicsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations