Advertisement

Experimental and Numerical Atomistic Investigation of the Third Body Formation Process in Dry Tungsten/Tungsten-Carbide Tribo Couples

  • 876 Accesses

  • 27 Citations

Abstract

The third body in tungsten/tungsten-carbide sliding systems is studied using a combination of experiments and atomistic simulations. Ex situ X-ray photoelectron spectroscopy and focused ion beam analysis of the structural and chemical changes near the surfaces reveals that sliding of tungsten against tungsten-carbide results in plastic deformation of the W surface, leading to grain refinement, and the formation of a mechanically mixed amorphous layer on the WC counter body. Molecular dynamics simulations of W/WC sliding couples exhibit the formation of a nanoscale amorphous W/WC interface. The infrequent occurrence of atomic jamming events in the interface resulted in the emission of dislocations into the W bulk and the generation of amorphous shear bands in the WC counter body in agreement with the different third bodies observed in W and WC after the experiments.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Kagnaya, T., Boher, C., Lambert, L., Lazard, M., Cutard, T.: Wear mechanisms of WC–Co cutting tools from high-speed tribological tests. Wear 267(5–8), 890–897 (2009). doi:10.1016/j.wear.2008.12.035

  2. 2.

    Yang, L.J.: Wear coefficient of tungsten-carbide against hot-work tool steel disc with two different pin settings. Wear 257(5–6), 481–495 (2004). doi:10.1016/j.wear.2004.01.014

  3. 3.

    Koc, R., Kodambaka, S.K.: Tungsten-carbide (WC) synthesis from novel precursors. J. Eur. Ceram. Soc. 20(11), 1859–1869 (2000). doi:10.1016/s0955-2219(00)00038-8

  4. 4.

    Voevodin, A.A., O’Neill, J.P., Zabinski, J.S.: Nanocomposite tribological coatings for aerospace applications. Surf. Coat. Technol. 116–119, 36–45 (1999). doi:10.1016/s0257-8972(99)00228-5

  5. 5.

    Yang, L.J.: Pin-on-disc wear testing of tungsten-carbide with a new moving pin technique. Wear 225–229(1), 557–562 (1999). doi:10.1016/s0043-1648(98)00380-9

  6. 6.

    Godet, M.: The third-body approach: a mechanical view of wear. Wear 100, 437–452 (1984). doi:10.1016/0043-1648(84)90025-5

  7. 7.

    Wahl, K.: Macroscale to microscale tribology. In: Micro- and Nanoscale Phenomena in Tribology. pp. 5–22. CRC Press, Boca Raton (2011)

  8. 8.

    Shockley, J.M., Strauss, H.W., Chromik, R.R., Brodusch, N., Gauvin, R., Irissou, E., Legoux, J.G.: In situ tribometry of cold-sprayed Al–Al2O3 composite coatings. Surf. Coat. Technol. (2012, in press). doi:10.1016/j.surfcoat.2012.04.099

  9. 9.

    Chromik, R.R., Winfrey, A.L., Lüning, J., Nemanich, R.J., Wahl, K.J.: Run-in behavior of nanocrystalline diamond coatings studied by in situ tribometry. Wear 265(3–4), 477–489 (2008). doi:10.1016/j.wear.207.11.023

  10. 10.

    Stachowiak, G.W., Batchelor, A.W.: Adhesion and adhesive wear. In: Engineering Tribology (Third Edition). pp. 553–572. Butterworth-Heinemann, Burlington (2006)

  11. 11.

    Descartes, S., Berthier, Y.: Rheology and flows of solid third bodies: background and application to an MoS1.6 coating. Wear 252(7–8), 546–556 (2002). doi:10.1016/s0043-1648(02)00008-x

  12. 12.

    Singer, I.L., Dvorak, S.D., Wahl, K.J., Scharf, T.W.: Role of third bodies in friction and wear of protective coatings. J. Vac. Sci. Technol. A 21(5), S232–S240 (2003). doi:10.1116/1.1599869

  13. 13.

    Sriraman, K.R., Strauss, H.W., Brahimi, S., Chromik, R.R., Szpunar, J.A., Osborne, J.H., Yue, S.: Tribological behavior of electrodeposited Zn, Zn–Ni, Cd and Cd–Ti coatings on low carbon steel substrates. Tribol. Int. 56, 107–120 (2012). doi:10.1016/j.triboint.2012.06.008

  14. 14.

    Blau, P.J.: On the nature of running-in. Tribol. Int. 38(11–12), 1007–1012 (2005). doi:10.1016/j.triboint.2005.07.020

  15. 15.

    Blau, P.J.: Fifty years of research on the wear of metals. Tribol. Int. 30(5), 321–331 (1997). doi:10.1016/s0301-679x(96)00062-x

  16. 16.

    Fischer, A.: Well-founded selection of materials for improved wear resistance. Wear 194(1–2), 238–245 (1996). doi:10.1016/0043-1648(95)06738-8

  17. 17.

    Szlufarska, I., Chandross, M., Carpick, R.W.: Recent advances in single-asperity nanotribology. J. Phys. D 41(12), 123001 (2008). doi:10.1088/0022-3727/41/12/123001

  18. 18.

    Hammerberg, J.E., Holian, B.L., Röder, J., Bishop, A.R., Zhou, S.J.: Nonlinear dynamics and the problem of slip at material interfaces. Phys. D 123(1–4), 330–340 (1998). doi:10.1016/s0167-2789(98)00132-8

  19. 19.

    Fu, X.-Y., Falk, M.L., Rigney, D.A.: Sliding behavior of metallic glass: part II computer simulations. Wear 250(1–12), 420–430 (2001). doi:10.1016/s0043-1648(01)00607-x

  20. 20.

    Karthikeyan, S., Kim, H.J., Rigney, D.A.: Velocity and strain-rate profiles in materials subjected to unlubricated sliding. Phys. Rev. Lett. 95(10), 106001 (2005). doi:10.1103/PhysRevLett.95.106001

  21. 21.

    Rigney, D.A.: Transfer, mixing and associated chemical and mechanical processes during the sliding of ductile materials. Wear 245(1–2), 1–9 (2000). doi:10.1016/s0043-1648(00)00460-9

  22. 22.

    Kim, H.J., Emge, A., Winter, R.E., Keightley, P.T., Kim, W.K., Falk, M.L., Rigney, D.A.: Nanostructures generated by explosively driven friction: experiments and molecular dynamics simulations. Acta Mater. 57(17), 5270–5282 (2009). doi:10.1016/j.actamat.2009.07.034

  23. 23.

    Pastewka, L., Moser, S., Gumbsch, P., Moseler, M.: Anisotropic mechanical amorphization drives wear in diamond. Nat. Mater. 10(1), 34–38 (2011). doi:10.1038/nmat2902

  24. 24.

    Pastewka, L., Pou, P., Pérez, R., Gumbsch, P., Moseler, M.: Describing bond-breaking processes by reactive potentials: importance of an environment-dependent interaction range. Phys. Rev. B 78(16), 161402 (2008)

  25. 25.

    Pastewka, L., Mrovec, M., Moseler, M., Gumbsch, P.: Bond-order potentials for fracture, wear, and plasticity. MRS Bull. 37, 493–503 (2012). doi:10.1557/mrs.2012.94

  26. 26.

    Albe, K., Nordlund, K., Averback, R.S.: Modeling the metal–semiconductor interaction: analytical bond-order potential for platinum–carbon. Phys. Rev. B 65(19), 195124 (2002). doi:10.1103/PhysRevB.65.195124

  27. 27.

    Feldmann, M., Peguiron, J., Moseler, M., Schirmeisen, A., Bennewitz, R.: Ageing of a microscopic sliding gold contact at low temperatures. Phys. Rev. Lett. 107(14), 144303 (2011). doi:10.1103/PhysRevLett.107.144303

  28. 28.

    Li, Q., Dong, Y., Perez, D., Martini, A., Carpick, R.W.: Speed dependence of atomic stick-slip friction in optimally matched experiments and molecular dynamics simulations. Phys. Rev. Lett. 106(12), 126101 (2011). doi:101103/PhysRevLett.106.126101

  29. 29.

    Juslin, N., Erhart, P., Traskelin, P., Nord, J., Henriksson, K.O.E., Nordlund, K., Salonen, E., Albe, K.: Analytical interatomic potential for modeling nonequilibrium processes in the W–C–H system. J. Appl. Phys. 98(12), 123520 (2005). doi:10.1063/1.21494492

  30. 30.

    Korres, S., Dienwiebel, M.: Design and construction of a novel tribometer with online topography and wear measurement. Rev. Sci. Instrum. 81(6), 063904 (2010). doi:10.1063/1.3449334

  31. 31.

    Leach, A.R.: Molecular Modelling: Principles and Applications, 2nd edn. Pearson Prentice Hall, Upper Saddle River (2001)

  32. 32.

    Müller, M., Erhart, P., Albe, K.: Analytic bond-order potential for bcc and fcc iron-comparison with established embedded-atom method potentials. J. Phys. 19(32), 326220 (2007). doi:10.1088/0953-8984/19/32/326220

  33. 33.

    Pastewka, L., Moser, S., Moseler, M.: Atomistic insights into the running-in, lubrication, and failure of hydrogenated diamond-like carbon coatings. Tribol. Lett. 39(1), 49–61 (2010). doi:10.1007/s11249-009-9566-8

  34. 34.

    Pastewka, L., Moser, S., Moseler, M., Blug, B., Meier, S., Hollstein, T., Gumbsch, P.: The running-in of amorphous hydrocarbon tribocoatings: a comparison between experiment and molecular dynamics simulations. Int. J. Mater. Res. 99(10), 1136–1143 (2008). doi:10.3139/146.101747

  35. 35.

    Lees, A.W., Edwards, S.F.: The computer study of transport processes under extreme conditions. J. Phys. C 5(15), 1921 (1972). doi:10.1088/0022-3719/5/15/006

  36. 36.

    Schneider, T., Stoll, E.: Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys. Rev. B 17(3), 1302–1322 (1978). doi:10.1103/PhysRevB.17.1302

  37. 37.

    Blau, P.J.: Friction Science and Technology: from Concepts to Applications, 2nd edn. CRC Press, Boca Raton (2008)

  38. 38.

    Mendez-Villuendas, E., Bowles, R.K.: Surface nucleation in the freezing of gold nanoparticles. Phys. Rev. Lett. 98(18), 185503 (2007). doi:10.1103/PhysRevLett.98.185503

  39. 39.

    Wang, K., Tao, N.R., Liu, G., Lu, J., Lu, K.: Plastic strain-induced grain refinement at the nanometer scale in copper. Acta Mater. 54(19), 5281–5291 (2006). doi:10.1016/j.actamat.2006.07.013

  40. 40.

    Mishra, A., Richard, V., Grégori, F., Asaro, R.J., Meyers, M.A.: Microstructural evolution in copper processed by severe plastic deformation. Mater. Sci. Eng. A 410–411, 290–298 (2005). doi:10.1016/j.msea.2005.08.201

  41. 41.

    Fu, X.-Y., Rigney, D.A., Falk, M.L.: Sliding and deformation of metallic glass: experiments and MD simulations. J. Non-Cryst. Solids 317(1–2), 206–214 (2003). doi:10.1016/s0022-3093(02)01999-3

Download references

Acknowledgments

We thank the Deutsche Forschungsgemeinschaft for financial support under contracts FI451, MO879, SCH425. TJ acknowledges support from the Academy of Finland (project number 136165). LP acknowledges support from the European Commission (Marie-Curie IOF-272619). The authors would also like to thank Diego Marchetto and Eberhard Nold for their help with the XPS investigations and the tribological tests that were performed in UHV.

Author information

Correspondence to Pantcho Stoyanov.

Appendix: Screened W–C Potential

Appendix: Screened W–C Potential

The screened interatomic W–C potential is based on the potential by Juslin et al. [29]. To facilitate screening, we replace all cut-off functions by screening functions as detailed in Ref. [24]. In addition, we modify the bond-order function in Eq. (1) from the form employed in Ref. [29].:

$$ \begin{aligned} b_{ij} = \left( {1 + \chi_{ij} } \right)^{{ - \frac{1}{2}}} \; \\ {\text{with}}\; \\ \chi_{ij} = \mathop \sum \limits_{k \ne i,j} S_{ik} \exp \left\{ {\left[ {2\mu \left( {r_{ij} - r_{ik} } \right)} \right]^{m} } \right\}g(\theta_{ijk} ) \end{aligned} $$
(2)

Here, i, j and k denote atom indices and \( r_{ij} \), \( r_{ik} \) are the distances between the respective atoms. \( S_{ik} \) is the screening function, and \( g\left( {\theta_{ijk} } \right) \) the angular contribution to the bond-order where \( \theta_{ijk} \) is the angle spanned by the atoms ijk. In addition to the screening cutoffs and the screening function parameters (see Ref. [24]), we need to specify the parameters \( \mu \) and m from Eq. (2). Unlike Ref. [24], we use a single screening function and do not distinguish between attractive/repulsive and bond-order screening. The resulting parameters are listed in Table 1. More details on the screening procedure and the rationale behind choosing a particular \( \mu_{ijk} \) and \( m_{ijk} \) will be presented in a future study.

Table 1 Parameters for the modified W–C potential

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stoyanov, P., Romero, P.A., Järvi, T.T. et al. Experimental and Numerical Atomistic Investigation of the Third Body Formation Process in Dry Tungsten/Tungsten-Carbide Tribo Couples. Tribol Lett 50, 67–80 (2013). https://doi.org/10.1007/s11249-012-0085-7

Download citation

Keywords

  • Tungsten
  • Tungsten-carbide
  • Third body
  • Amorphization
  • Mechanical mixing
  • Molecular dynamics