Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Correlation Between Mechanical Properties and Nanofriction of [Ti–Cr/Ti–Cr–N] n and [Ti–Al/Ti–Al–N] n Multilayers

  • 257 Accesses

  • 2 Citations

Abstract

In this work, thin films deposited by pulsed DC magnetron sputtering of [Ti–Al/Ti–Al–N] n and [Ti–Cr/Ti–Cr–N] n multilayers of nanometric periods were analyzed by AFM in contact mode to measure values of lateral and normal forces. From these measurements, the coefficient of friction (COF) of these materials in contact with the AFM tip was calculated. Measurements were made with three types of silicon tips, diamond-coated, Pt–Cr-coated, and bare silicon. Significant differences between the tip materials in contact with the samples, which affected the COF, were observed. The effect of the environmental layer of water covering the surface sample and the tip appears as the most important factor affecting the tribology behavior of the tip-sample contact. For diamond-coated and bare silicon tips there is an additional adherence force increasing the normal load. But for tips platinum–chromium-coated there is a repulsive force due to this water layer, which behaves as a lubricant layer before a threshold load.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Munz, W.D.: Titanium aluminum nitride films: a new alternative to TiN coatings. J. Vac. Sci. Technol. A4, 2717–2725 (1986)

  2. 2.

    Ikeda, T., Satoh, H.: Phase formation and characterization of hard coatings in the TiAlN system prepared by the cathodic arc ion plating method. Thin Solid Films 195, 99–110 (1991)

  3. 3.

    Zhang, G.A., Yan, P.X., Wang, P., Chen, Y.M., Zhang, J.Y.: The structural and tribological behaviors of CrN and Cr-Ti-N coatings. Appl. Surf. Sci. 253, 7353–7359 (2007)

  4. 4.

    Mo, J.L., Zhu, M.H., Lei, B., Leng, Y.X., Huang, N.: Comparison of tribological behaviours of AlCrN and TiAlN coatings—deposited by physical vapor deposition. Wear 263, 1423–1429 (2007)

  5. 5.

    Sánchez, J.E., Sánchez, O.M., Ipaz, L., Aperador, W., Caicedo, J.C., Amaya, C., Hernández-Landaverde, M.A., Espinoza-Beltran, F., Muñoz-Saldaña, J., Zambrano, G.: Mechanical, tribological and electrochemical behavior of Cr1−xAlxN coatings deposited by r.f. reactive magnetron co-sputtering method. Appl. Surf. Sci. 256, 2380–2387 (2010)

  6. 6.

    Knotek, O., Munz, W.D., Leyendecker, T.: Industrial deposition of binary, ternary and quaternary nitrides of titanium, zirconium and aluminium. J. Vac. Sci. Technol. A5, 2173–2179 (1987)

  7. 7.

    Chakrabarti, K., Jeong, J.J., Hwang, S.K., Yoo, Y.C., Lee, C.M.: Effects of nitrogen flow rates on the growth morphology of TiAlN films prepared by an rf-reactive sputtering technique. Thin Solid Films 406, 159–163 (2002)

  8. 8.

    Hsieh, J.H., Liang, C., Yu, C.H., Wu, W.: Deposition and characterization of TiAlN and multi-layered TiN/TiAlN coatings using unbalanced magnetron sputtering. Surf. Coat. Technol. 108, 132–137 (1998)

  9. 9.

    PalDey, S., Deevi, S.C.: Single layer and multilayer wear resistant coatings of (Ti, Al)N: a review. Mater. Sci. Eng., A 342, 58–79 (2003)

  10. 10.

    Andersen, K.N., Bienk, E.L., Schweitz, K.O., Reitz, H., Chevallier, J., Kringhoj, P., Bottiger, J.: Deposition, microstructure and mechanical and tribological properties of magnetron sputtered TiN/TiAlN multilayers. Surf. Coat. Technol. 123, 219–226 (2000)

  11. 11.

    Brogren, M., Harding, G.L., Karmhag, R., Ribbing, C.G., Niklasson, G.A., Stenmark, L.: Titanium–aluminum–nitride coatings for satellite temperature control. Thin Solid Films 370, 268–277 (2000)

  12. 12.

    Jehn, H.A.: Improvement of the corrosion resistance of PVD hard coating–substrate systems. Surf. Coat. Technol. 125, 212–217 (2000)

  13. 13.

    Bressan, J.D., Hesse, R., Silva Jr, E.M.: Abrasive wear behavior of high speed steel and hard metal coated with TiAlN and TiCN. Wear 250, 561–568 (2001)

  14. 14.

    Yang, Q., Seo, D.Y., Zhao, L.R., Zeng, X.T.: Erosion resistance performance of magnetron sputtering deposited TiAlN coatings. Surf. Coat. Technol. 188, 168–173 (2004)

  15. 15.

    Vishnyakov, V.M., Bachurin, V.I., Minnebaev, K.F., Valizadeh, R., Teer, D.G., Colligon, J.S., Vishnyakov, V.V., Yurasova, V.E.: Ion assisted deposition of titanium chromium nitride. Thin Solid Films 497, 189–195 (2006)

  16. 16.

    Bhushan, B., Kwak, K.J.: The role of lubricants, scanning velocity and operating environment in adhesion, friction and wear of Pt–Ir coated probes for atomic force microscope probe-based ferroelectric recording technology. J. Phys.: Condens. Matter 20, 325240 (2008)

  17. 17.

    Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992)

  18. 18.

    Espinoza-Beltrán, F.J., Geng, K., Muñoz-Saldaña, J., Rabe, U., Hirsekorn, S., Arnold, W.: Simulation of vibrational resonances of stiff AFM cantilevers by finite element methods. New J. Phys. 11, 083034 (2009)

  19. 19.

    Meyer, G., Amer, N.M.: Simultaneous measurement of lateral and normal forces with an optical-bem-deflection atomic force microscope. Appl. Phys. Lett. 57, 2089–2091 (1990)

  20. 20.

    Ipaz, L., Caicedo, J.C., Esteve, J., Espinoza-Beltran, F.J., Zambrano, G.: Improvement of mechanical and tribological properties in steel surfaces by using titanium–aluminum/titanium–aluminum nitride multilayered system. Appl. Surf. Sci. 258, 3805–3814 (2012)

  21. 21.

    Chu, X., Barnett, S.A.: Model of superlattice yield stress and hardness enhancements. J. Appl. Phys. 77, 4403–4411 (1995)

  22. 22.

    Bhushan, B.: Handbook of nano-technology, 3rd edn. Springer, New York (2010)

  23. 23.

    Bowden, F.P., Tabor, D.: The friction and lubrication of solids. Oxford University Press, Oxford (1950)

  24. 24.

    Bhushan, B.: Handbook of micro/nanotribology, 2nd edn. CRC Press LLC, Boca Raton (1999)

  25. 25.

    Xie, G., Ding, J., Zheng, B., Xue, W.: Investigation of adhesive and frictional behavior of GeSbTe films with AFM/FFM. Tribol. Int. 42, 183–189 (2009)

  26. 26.

    Guo, S., Hedborg, E., Lundstrom, I., Arwin, H.: Air pockets in thin porous platinum films studied by spectroscopic ellipsometry. Thin Solid Films 293, 179–184 (1997)

Download references

Acknowledgments

This work was partially supported by ‘‘El Patrimonio Autónomo Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación Francisco José de Caldas’’ Contract RC-no. 275-2011 and CONACYT, México. Moreover, the authors acknowledge the Serveis Cientifico-Tecnics of the Universitat de Barcelona for SEM analysis and L. Ipaz thanks COLCIENCIAS for the doctoral fellowship.

Author information

Correspondence to L. Ipaz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ipaz, L., Ruiz-Luna, H., Espinoza-Beltrán, F.J. et al. Correlation Between Mechanical Properties and Nanofriction of [Ti–Cr/Ti–Cr–N] n and [Ti–Al/Ti–Al–N] n Multilayers. Tribol Lett 49, 403–412 (2013). https://doi.org/10.1007/s11249-012-0081-y

Download citation

Keywords

  • Atomic force microscopy
  • Coefficient of friction
  • Co-sputtering