Tribology Letters

, Volume 50, Issue 1, pp 49–57 | Cite as

Correlation Between Probe Shape and Atomic Friction Peaks at Graphite Step Edges

  • Yalin Dong
  • Xin Z. Liu
  • Philip Egberts
  • Zhijiang Ye
  • Robert W. Carpick
  • Ashlie Martini
Original Paper

Abstract

Molecular dynamics simulation and atomic force microscopy are used to study the nature of friction between nanoscale tips and graphite step edges. Both techniques show that the width of the lateral force peak as the probe moves up a step is directly correlated with the size and shape of the tip. The origin of that relationship is explored and the similarities and differences between the measurements and simulations are discussed. The observations suggest that the relationship between lateral force peak width and tip geometry can be used as a real-time monitor for tip wear during atomic scale friction measurements.

Keywords

Molecular dynamics (MD) simulation  Atomic force microscopy (AFM) Atomic friction 

Notes

Acknowledgments

The authors would like to thank the U.S. National Science Foundation for its support through Grants No. CMMI 1068552 and CMMI-1068741. We are grateful to Dr. Hendrik Hölscher and Dr. Qunyang Li for the insightful discussions when initiating this work and to Tevis D. B. Jacobs and Graham Wabiszewski for their help to acquire TEM images. P.E. would like to acknowledge financial support from the Natural Sciences and Engineering Research Council (NSERC) of Canada.

References

  1. 1.
    Müller, T., Lohrmann, M., Kässer, T., Marti, O., Mlynek, J., Krausch, G.: Frictional force between a sharp asperity and a surface Step. Phys. Rev. Lett. 79(25), 5066 (1997)CrossRefGoogle Scholar
  2. 2.
    Hausen, F., Nielinger, M., Ernst, S., Baltruschat, H.: Nanotribology at single crystal electrodes: influence of ionic adsorbates on friction forces studied with AFM. Electrochimica Acta 53(21), 6058 (2008)CrossRefGoogle Scholar
  3. 3.
    Hölscher, H., Ebeling, D., Schwarz, U.: Friction at atomic-scale surface steps: experiment and theory. Phys. Rev. Lett. 101(24), 246105 (2008)CrossRefGoogle Scholar
  4. 4.
    Steiner, P., Gnecco, E., Krok, F., Budzioch, J., Walczak, L., Konior, J., Szymonski, M., Meyer, E.: Atomic-scale friction on stepped surfaces of ionic crystals. Phys. Rev. Lett. 106(18), 186104 (2011)CrossRefGoogle Scholar
  5. 5.
    Mate, C., McClelland, G., Erlandsson, R., Chiang, S.: Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59(17), 1942 (1987)CrossRefGoogle Scholar
  6. 6.
    Dienwiebel, M., Verhoeven, G., Pradeep, N., Frenken, J., Heimberg, J., Zandbergen, H.: Superlubricity of graphite. Phys. Rev. Lett. 92(12), 126101 (2004)CrossRefGoogle Scholar
  7. 7.
    Lee, C., Li, Q., Kalb, W., Liu, X., Berger, H., Carpick, R., Hone, J.: Frictional characteristics of atomically thin sheets. Science 328(5974), 76 (2010)CrossRefGoogle Scholar
  8. 8.
    Filleter, T., Paul, W., Bennewitz, R.: Atomic structure and friction of ultrathin films of KBr on Cu(100). Phys. Rev. B. 77(3), 035430 (2008)CrossRefGoogle Scholar
  9. 9.
    Green, C., Lioe, H., Cleveland, J., Proksch, R., Mulvaney, P., Sader, J.: Normal and torsional spring constants of atomic force microscope cantilevers. Rev. Sci. Instrum. 75, 1988 (2004)CrossRefGoogle Scholar
  10. 10.
    Young, W.: Roark’s Formulas for Stress and Strain. 6 edn. McGraw-Hill, New York (1989)Google Scholar
  11. 11.
    Horcas, I., Fernandez, R., Gomez-Rodriguez, J., Colchero, J., Gómez-Herrero, J., Baro, A.: WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78(1), 013705 (2007)CrossRefGoogle Scholar
  12. 12.
    Niimi, Y., Matsui, T., Kambara, H., Tagami, K., Tsukada, M., Fukuyama, H.: Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges. Phys. Rev. B. 73(8), 085421 (2006)CrossRefGoogle Scholar
  13. 13.
    Schneider, T., Stoll, E.: Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys. Rev. B. 17(3), 1302 (1978)CrossRefGoogle Scholar
  14. 14.
    Stuart, S., Tutein, A., Harrison, J.: A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472 (2000)CrossRefGoogle Scholar
  15. 15.
    Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1 (1995)CrossRefGoogle Scholar
  16. 16.
    Liu, J., Notbohm, J., Carpick, R., Turner, K.: Method for characterizing nanoscale wear of atomic force microscope tips. ACS Nano 4(7), 3763 (2010)CrossRefGoogle Scholar
  17. 17.
    Liu, J., Grierson, D.S., Moldovan, N., Notbohm, J., Li, S., Jaroenapibal, P., O’Connor, S.D., Sumant, A.V., Neelakantan, N., Carlisle, J.A., Turner, K.T., Carpick, R.W.: Preventing nanoscale wear of atomic force microscopy tips through the use of monolithic ultrananocrystalline diamond probes. Small 6(10), 1140 (2010)CrossRefGoogle Scholar
  18. 18.
    Johnson, K., Woodhouse, J.: Stick-slip motion in the atomic force microscope. Tribol. Lett. 5(2), 155 (1998)CrossRefGoogle Scholar
  19. 19.
    Socoliuc, A., Bennewitz, R., Gnecco, E., Meyer, E.: Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction. Phys. Rev. Lett. 92(13), 134301 (2004)CrossRefGoogle Scholar
  20. 20.
    Medyanik, S., Liu, W., Sung, I., Carpick, R.: Predictions and observations of multiple slip modes in atomic-scale friction. Phys. Rev. Lett. 97(13), 136106 (2006)CrossRefGoogle Scholar
  21. 21.
    Dong, Y., Vadakkepatt, A., Martini, A.: Analytical models for atomic friction. Tribol. Lett. 44(3), 367 (2011)CrossRefGoogle Scholar
  22. 22.
    Hunter, L., Siegel, S.: The variation with temperature of the principal elastic moduli of NaCl near the melting point. Phys. Rev. 61, 84 (1942)CrossRefGoogle Scholar
  23. 23.
    Grimsditch, M.: Shear elastic modulus of graphite. J. Phys. C. 16(5), 143 (1983)CrossRefGoogle Scholar
  24. 24.
    Ebbesen, T.W., Hiura, H.: Graphene in 3-dimensions: towards graphite origami. Adv. Mater. 7(6), 582 (1995)CrossRefGoogle Scholar
  25. 25.
    Khurshudov, A., Kato, K.: Wear of the atomic force microscope tip under light load, studied by atomic force microscopy. Ultramicroscopy 60(1), 11 (1995)CrossRefGoogle Scholar
  26. 26.
    Agrawal, R., Moldovan, N., Espinosa, H.: An energy-based model to predict wear in nanocrystalline diamond atomic force microscopy tips. J Appl. Phys. 106, 064311 (2009)CrossRefGoogle Scholar
  27. 27.
    Jacobs, T., Gotsmann, B., Lantz, M., Carpick, R.: On the application of transition state theory to atomic-scale wear. Tribol. Lett. 39(3), 257 (2010)CrossRefGoogle Scholar
  28. 28.
    Killgore, J.P., Geiss, R.H., Hurley, D.C.: Continuous measurement of atomic force microscope tip wear by contact resonance force microscopy. Small 7(8), 1018 (2011)CrossRefGoogle Scholar
  29. 29.
    Kim, K.-H., Moldovan, N., Ke, C., Espinosa, H.D., Xiao, X., Carlisle, J.A., Auciello, O.: Novel ultrananocrystalline diamond probes for high-resolution low-wear nanolithographic techniques. Small 1(8-9), 866 (2005)CrossRefGoogle Scholar
  30. 30.
    Maier, S., Gnecco, E., Baratoff, A., Bennewitz, R., Meyer, E.: Atomic-scale friction modulated by a buried interface: combined atomic and friction force microscopy experiments. Phys. Rev. B 78(4), 045432 (2008)CrossRefGoogle Scholar
  31. 31.
    Dongmo, S., Troyon, M., Vautrot, P., Delain, E., Bonnet, N.: Blind restoration method of scanning tunneling and atomic force microscopy images. J. Vac. Sci. Tech. B 14(2), 1552 (1996)CrossRefGoogle Scholar
  32. 32.
    Dongmo, L., Villarrubia, J., Jones, S., Renegar, T., Postek, M., Song, J.: Experimental test of blind tip reconstruction for scanning probe microscopy. Ultramicroscopy 85(3), 141 (2000)CrossRefGoogle Scholar
  33. 33.
    Bykov, V., Gologanov, A., Shevyakov, V.: Test structure for SPM tip shape deconvolution. Appl. Phys. A. 66(5), 499 (1998)CrossRefGoogle Scholar
  34. 34.
    Itoh, H., Fujimoto, T., Ichimura, S.: Tip characterizer for atomic force microscopy. Rev. Sci. Instrum. 77(10), 103704 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Yalin Dong
    • 1
  • Xin Z. Liu
    • 2
  • Philip Egberts
    • 2
  • Zhijiang Ye
    • 3
  • Robert W. Carpick
    • 2
  • Ashlie Martini
    • 3
  1. 1.School of Mechanical EngineeringPurdue UniversityWest LafayetteUSA
  2. 2.Department of Mechanical Engineering and Applied MechanicsUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.School of EngineeringUniversity of California MercedMercedUSA

Personalised recommendations