Tribology Letters

, Volume 50, Issue 1, pp 17–30 | Cite as

Contact Mechanics and Friction on Dry and Wet Human Skin

  • B. N. J. Persson
  • A. Kovalev
  • S. N. Gorb
Original Paper


The surface topography of the human wrist skin is studied using an optical method and the surface roughness power spectrum is obtained. The Persson contact mechanics theory is used to calculate the contact area for different magnifications, for both dry and wet condition of the skin. For dry skin, plastic yielding becomes important and will determine the area of contact observed at the highest magnification. The measured friction coefficient [M.J. Adams et al., Tribol Lett 26:239, 2007] on both dry and wet skin can be explained assuming that a frictional shear stress σf ≈ 15 MPa acts in the area of real contact during sliding. This frictional shear stress is typical for sliding on polymer surfaces, and for thin (nanometer) confined fluid films. The big increase in the friction, which has been observed for glass sliding on wet skin as the skin dries up, can be explained as resulting from the increase in the contact area arising from the attraction of capillary bridges. This effect is predicted to operate as long as the water layer is thinner than ∼14 μm, which is in good agreement with the time period (of order 100 s) over which the enhanced friction is observed (it takes about 100 s for ∼14 μm water to evaporate at 50% relative humidity and at room temperature). We calculate the dependency of the sliding friction coefficient on the sliding speed on lubricated surfaces (Stribeck curve). We show that sliding of a sphere and of a cylinder gives very similar results if the radius and load on the sphere and cylinder are appropriately related. When applied to skin the calculated Stribeck curve is in good agreement with experiment, except that the curve is shifted by one velocity-decade to higher velocities than observed experimentally. We explain this by the role of the skin and underlying tissues viscoelasticity on the contact mechanics.


Contact mechanics Skin friction Water layer 



We thank M.J. Adams and S.A. Johnson for useful communications, and for sending us their surface topography data for skin.


  1. 1.
    Adams, M.J., Briscoe, B.J., Johnson, S.A.: Friction and lubrication of human skin. Tribol. Lett. 26, 239–253 (2007)CrossRefGoogle Scholar
  2. 2.
    Park, A.C., Baddiel, C.B.: Effect of saturated salt solutions on elastic properties of stratum corneum. J. Soc. Cosmet. Chem. 23, 3, 471–479 (1972)Google Scholar
  3. 3.
    Warman, P.H., Ennos, A.R.: Fingerprints are unlikely to increase the friction of primate fingerpads. J. Exp. Biol. 212, 2016–2022 (2009)CrossRefGoogle Scholar
  4. 4.
    Derler, S., Gerhardt, L.-C.: Tribology of skin: review and analysis of experimental results for the friction coefficient of human skin. Tribol. Lett. 45, 1–27 (2012)CrossRefGoogle Scholar
  5. 5.
    Persson, B.N.J.: Contact mechanics for randomly rough surfaces. Surf. Sci. Rep. 61, 201–227 (2006)CrossRefGoogle Scholar
  6. 6.
    Persson, B.N.J., Albohr, O., Tartaglino, U., Volokitin A.I., Tosatti, E.: On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion, J. Phys.: Condens. Matter 17, R1–R62 (2005)Google Scholar
  7. 7.
    Kendall, M.A.F., Carter, F.V., Mitchell, T.J., Bellhouse, B.J.: University of Oxfort, UK, research article: Comparison of the transdermal ballistic delivery of micro-particles into the human and porcine skin.
  8. 8.
    Persson, B.N.J., Ganser, C., Schmied, F., Teichert, C., Schennach, R., Gilli, E., Hirn, U.: Adhesion of cellulose fibers in paper, subm. to J. Phys.: Condens. MatterGoogle Scholar
  9. 9.
    Persson, B.N.J.: Theory of rubber friction and contact mechanics. J. Chem. Phys. 115, 3840–3861 (2001)CrossRefGoogle Scholar
  10. 10.
    O’Sullivan, T.C., King, R.B.: Sliding contact stress-field due to a spherical indenter on a layered elastic half-space. ASME J. Tribol. 110, 235–240 (1988)CrossRefGoogle Scholar
  11. 11.
    Persson, B.N.J.: Contact mechanics for layered materials with randomly rough surfaces. J. Phys.: Condens. Matter 24, 095008 (2012)CrossRefGoogle Scholar
  12. 12.
    Carbone, G., Lorenz, B., Persson, B.N.J., Wohlers, A.: Contact mechanics and rubber friction for randomly rough surfaces with anisotropic statistical properties. Eur. Phys. J. E. 29, 275–284 (2009)CrossRefGoogle Scholar
  13. 13.
    Sivebaek, I.M., Samoilov, V.N., Persson, B.N.J.: Frictional properties of confined polymers. Eur. Phys. J. E. 27, 37–46 (2008)CrossRefGoogle Scholar
  14. 14.
    Sivebaek, I.M., Samoilov, V.N., Persson, B.N.J.: Effective viscosity of confined hydrocarbons. Phys. Rev. Lett. 108, 036102 (2012)CrossRefGoogle Scholar
  15. 15.
    Persson, B.N.J.: Capillary adhesion between elastic solids with randomly rough surfaces. J. Phys.: Condens. Matter 20, 315007 (2008)CrossRefGoogle Scholar
  16. 16.
    Persson, B.N.J., Volokitin, A.I., Tosatti, E.: Role of the external pressure on the dewetting of soft interfaces. Eur. Phys. J. E. 11, 409–413 (2003)CrossRefGoogle Scholar
  17. 17.
    Deleau, F., Mazuyer, D., Koenen, A.: Sliding friction at elastomer/glass contact: influence of the wetting conditions and instability analysis. Tribol. Int. 42, 149–159 (2009)CrossRefGoogle Scholar
  18. 18.
    Wangenheim, M., Kröger, M.: Friction phenomena on microscale in technical contacts with rubber. Proceedings 9th ASME Conference on Engineering Systems Design and Analysis 3, ESDA (2008), Haifa, Israel. S., pp. 541–547Google Scholar
  19. 19.
    Homann, H.: Haften Spinnen an einer Wasserhaut. Naturwissenschaften 44, 318–319 (1957). doi: 10.1007/BF00630926 CrossRefGoogle Scholar
  20. 20.
    Huber, G., Mantz, H., Spolenak, R., Mecke, K., Jacobs, K., Gorb, S.N., Arzt, E.: Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. Proc. Natl Acad. Sci. USA 102, 16293–16296 (2005). doi: 10.1073/pnas.0506328102 Google Scholar
  21. 21.
    Niewiarowski, P.H., Lopez, S., Ge, L., Hagan, E., Dhinojwala, A.: Sticky gecko feet: the role of temperature and humidity. PLoS ONE 3, e2192 (2008). doi: 10.1371/journal.pone.0002192
  22. 22.
    Wolff, J.O., Gorb, S.N.: The influence of humidity on the attachment ability of the spider Philodromus dispar (Araneae, Philodromidae). Proc. R. Soc. B 279, 139–143 (2012). doi: 10.1098/rspb.2011.0505 CrossRefGoogle Scholar
  23. 23.
    Gerhardt, L.-C., Strssle, V., Lenz, A., Spencer, N.D., Derler, S.: Influence of epidermal hydration on the friction of human skin against textiles. J. R. Soc. Interface 5, 1317–1328 (2008)CrossRefGoogle Scholar
  24. 24.
    Hendriks, C., Franklin, S.: Influence of surface roughness, material and climate conditions on the friction of human skin. Tribol. Lett. 37, 361–373 (2010)CrossRefGoogle Scholar
  25. 25.
    Kwiatkowska, M., Franklin, S.E., Hendriks, C.P., Kwiatkowski, K.: Friction and deformation behaviour of human skin. Wear 267, 1264–1273 (2009)CrossRefGoogle Scholar
  26. 26.
    Tomlinson, S.E., Lewis, R., Liu, X., Texier, C., Carr, M.J.: Understanding the friction mechanisms between the human finger and flat contacting surfaces in moist conditions. Tribol. Lett. 41, 283–294 (2011)CrossRefGoogle Scholar
  27. 27.
    Pasumarty, S.M., Johnson, S.A., Watson, S.A., Adams, M.J.: Friction of the human finger pad: influence of moisture, occlusion and velocity. Tribol. Lett. 44, 117–137 (2011)CrossRefGoogle Scholar
  28. 28.
    Persson, B.N.J., Scaraggi, M.: On the transition from boundary lubrication to hydrodynamic lubrication in soft contacts. J. Phys.: Condens. Matter 21, 185002 (2009)CrossRefGoogle Scholar
  29. 29.
    Persson, B.N.J., Scaraggi, M.: Lubricated sliding dynamics: flow factors and Stribeck curve. Eur. Phys. J. E 34, 113 (2011)CrossRefGoogle Scholar
  30. 30.
    Scaraggi, M., Carbone, G., Persson, B.N.J., Dini, D.: Lubrication in soft rough contacts: a novel homogenized approach. Part I—theory. Soft Matter 7, 10395–10406 (2011)CrossRefGoogle Scholar
  31. 31.
    Johnson, K.L.: Contact Mechanics, p. 452. Cambridge University Press, Cambridge (1966)Google Scholar
  32. 32.
    Bowen, J., Cheneler, D., Andrews, J.W., Avery, A.R., Zhand, Z., Ward, M.C.L., Adams, M.J.: Application of colloid probe atomic force microscopy to the adhesion of thin films of viscous and viscoelastic silicone fluids. Langmuir 27, 11489–11500 (2011)CrossRefGoogle Scholar
  33. 33.
    Stephens, T.S., Winter, H.H., Gottlieb, M.: The steady shear viscosity of filled polymeric liquids described by a linear superposition of 2 relaxation mechanisms. Rheol. Acta 27, 263–272 (1988)CrossRefGoogle Scholar
  34. 34.
  35. 35.
    Johnson, S.A., Gorman, D.M., Adams, M.J., Briscoe, B.J.: The friction and lubrication of human stratum corneum. In: D. Dowson et al (eds.) Thin films in technology, pp 663–672. Elsevier Science Publishers (1993)Google Scholar
  36. 36.
    Persson, B.N.J.: Rolling friction for hard cylinder and sphere on viscoelastic solid. Eur. Phys. J. E. 33, 327–333 (2010)CrossRefGoogle Scholar
  37. 37.
    Tomlinson, S.E., Lewis, R., Carre, M.J.: The effect of normal force and roughness on friction in human finger contact. Wear 267, 1311–1318 (2009)CrossRefGoogle Scholar
  38. 38.
    Vincent, J.F., Wegst, U.K.: Design and mechanical properties of insect cuticle. Arthr. Str. Dev. 33, 187–199 (2004). doi: 10.1016/j.asd.2004.05.006 CrossRefGoogle Scholar
  39. 39.
    Puthoff, J.B., Prowse, M.S., Wilkinson, M., Autumn, K.: Changes in materials properties explain the effects of humidity on gecko adhesion. J. Exp. Biol. 213, 3699–3704 (2010). doi: 10.1242/jeb.047654 CrossRefGoogle Scholar
  40. 40.
    Richards, S.C., Roberts, A.D.: Boundary lubrication of rubber by aqueous surfactant. J. Phys. D 25, A76–A80 (1992)CrossRefGoogle Scholar
  41. 41.
    Geerligs, M.: A literature review of the mechanical behaviour of the stratum corneum, the living epidermis and the subcutaneous fat tissue, Technical Note PR-TN 2006/00450, Koninklijke Philips Electronics N.V. (2006)Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.IFF, FZ-JülichJülichGermany
  2. 2.Department of Functional Morphology and BiomechanicsZoological Institute at the University of KielKielGermany

Personalised recommendations