Friction on a Microstructured Elastomer Surface

  • 1156 Accesses

  • 38 Citations


The friction of microstructured polydimethylsiloxane samples against a glass surface is studied through force measurements and simultaneous optical microscopy. Both average friction forces and the amplitude of stick-slip oscillations are greatly reduced by the structuring. Optical microscopy reveals waves propagating through the contact in connection which stick-slip events. The experimental observations are interpreted with the help of simulations of a spring-block model for which parameters are directly derived from the experiment. Stress gradients across the contact area are found to play an important role for the frictional behavior.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    Hiller, U.: Untersuchungen zum Feinbau und zur Funktion der Haftborsten von Reptilien. Zoomorphology 62(4), 307 (1968)

  2. 2.

    Autumn, K., Liang, Y.A., Hsieh, S.T., Zesch, W., Chan, W.P., Kenny, T.W., Fearing, R., Full, R.J.: Adhesive force of a single gecko foot-hair. Nature 405(6787), 681 (2000)

  3. 3.

    Arzt, E., Enders, S., Gorb, S.: Towards a micromechanical understanding of biological surface devices. Zeitschrift fuer Metallkunde 93(5), 345 (2002)

  4. 4.

    Kamperman, M., Kroner, E., del Campo, A., McMeeking, R.M., Arzt, E.: Functional adhesive surfaces with “gecko” effect: the concept of contact splitting. Adv. Eng. Mater. 12(5), 335 (2010)

  5. 5.

    Boesel, L.F., Greiner, C., Arzt, E., del Campo, A.: Gecko-inspired surfaces: a path to strong and reversible dry adhesives. Adv. Mater. 22(19), 2125 (2010)

  6. 6.

    Majumder, A., Sharma, A., Ghatak, A.: Bio-inspired adhesion and adhesives: controlling adhesion by micro-nano structuring of soft surfaces. In: Chakraborty, S. (ed.) Microfluidics and Microfabrication, pp. 283–307. Springer, New York (2010)

  7. 7.

    Creton, C., Gorb, S. (eds.): Sticky Feet: From Animals to Materials, MRS Bulletin, vol. 32 (2007)

  8. 8.

    Jagota, A., Hui, C.Y.: Adhesion, friction, and compliance of bio-mimetic and bio-inspired structured interfaces. Mater. Sci. Eng. R-Reports 72(12), 253 (2011)

  9. 9.

    Varenberg, M., Gorb, S.: Shearing of fibrillar adhesive microstructure: friction and shear-related changes in pull-off force. J. R. Soc. Interface 4(15), 721 (2007)

  10. 10.

    Yao, H., Della Rocca, G., Guduru, P.R., Gao, H.: Adhesion and sliding response of a biologically inspired fibrillar surface: experimental observations. J. R. Soc. Interface 5(24), 723 (2008)

  11. 11.

    Zeng, H.B., Pesika, N., Tian, Y., Zhao, B.X., Chen, Y.F., Tirrell, M., Turner, K.L., Israelachvili, J.N.: Frictional adhesion of patterned surfaces and implications for gecko and biomimetic systems. Langmuir 25(13), 7486 (2009)

  12. 12.

    Murphy, M.P., Aksak, B., Sitti, M.: Gecko-inspired directional and controllable adhesion. Small 5(2), 170 (2009)

  13. 13.

    Kim, S., Aksak, B., Sitti, M.: Enhanced friction of elastomer microfiber adhesives with spatulate tips. Appl. Phys. Lett. 91(22), 221913 (2007)

  14. 14.

    Murphy, M.P., Aksak, B., Sitti, M.: Adhesion and anisotropic friction enhancements of angled heterogeneous micro-fiber arrays with spherical and spatula tips. J. Adhes. Sci. Technol. 21(12–13), 1281 (2007)

  15. 15.

    Rand, C.J., Crosby, A.J.: Friction of soft elastomeric wrinkled surfaces. J. Appl. Phys. 106(6), 064913 (2009)

  16. 16.

    Varenberg, M., Gorb, S.N.: Hexagonal surface micropattern for dry and wet friction. Adv. Mater. 21(4), 483 (2009)

  17. 17.

    Murarash, B., Itovich, Y., Varenberg, M.: Tuning elastomer friction by hexagonal surface patterning. Soft Matter 7(12), 5553 (2011)

  18. 18.

    Rubinstein, S.M., Cohen, G., Fineberg, J.: Detachment fronts and the onset of dynamic friction. Nature 430(7003), 1005 (2004)

  19. 19.

    Maegawa, S., Suzuki, A., Nakano, K.: Precursors of global slip in a longitudinal line contact under non-uniform normal loading. Tribol. Lett. 38(3), 313 (2010)

  20. 20.

    Ben-David, O., Cohen, G., Fineberg, J.: The dynamics of the onset of frictional slip. Science 330(6001), 211 (2010)

  21. 21.

    Bennewitz, R., David, J., de Lannoy, C.F., Drevniok, B., Hubbard-Davis, P., Miura, T., Trichtchenko, O.: Dynamic strain measurements in a sliding microstructured contact. J. Phys. Condens. Matter 20(1), 015004 (2008)

  22. 22.

    Rubinstein, S.M., Cohen, G., Fineberg, J.: Contact area measurements reveal loading-history dependence of static friction. Phys. Rev. Lett. 96(25), 256103 (2006)

  23. 23.

    Shen, L., Glassmaker, N.J., Jagota, A., Hui, C.Y.: Strongly enhanced static friction using a filmterminated fibrillar interface. Soft Matter 4(3), 618 (2008)

  24. 24.

    Kramer, R.K., Majidi, C., Wood, R.J.: Shear-mode contact splitting for a microtextured elastomer film. Adv. Mater. 22(33), 3700 (2010)

  25. 25.

    Lorenz, B., Persson, B.N.J.: On the origin of why static or breakloose friction is larger than kinetic friction, and how to reduce it: the role of aging, elasticity and sequential interfacial slip. J. Phys. Condens. Matter 24, 225008 (2012)

  26. 26.

    Schallamach, A.: How does rubber slide?. Wear 17(4), 301–312 (1971)

  27. 27.

    Rand, C.J., Crosby, A.J.: Insight into the periodicity of schallamach waves in soft material friction. Appl. Phys. Lett. 89(26), 261907 (2006)

  28. 28.

    Maegawa, S., Nakano, K.: Mechanism of stick-slip associated with schallamach waves. Wear 268(7-8), 924 (2010)

  29. 29.

    He, B., Chen, W., Wang, Q.J.: Surface texture effect on friction of a microtextured poly(dimethylsiloxane) (pdms). Tribol. Lett. 31(3), 187 (2008)

  30. 30.

    del Campo, A., Greiner, C., Arzt, E.: Contact shape controls adhesion of bioinspired fibrillar surfaces. Langmuir 23(20), 10235 (2007)

  31. 31.

    Guidoni, G., Schillo, D., Hangen, U., Castellanos, G., Arzt, E., McMeeking, R., Bennewitz, R.: Discrete contact mechanics of a fibrillar surface with backing layer interactions. J. Mech. Phys. Solids 58, 1571 (2010)

  32. 32.

    Braun, O.M., Barel, I., Urbakh, M.: Dynamics of transition from static to kinetic friction. Phys. Rev. Lett. 103(19), 194301 (2009)

  33. 33.

    Lorenz, B., Persson, B.N.J.: Interfacial separation between elastic solids with randomly rough surfaces: comparison of experiment with theory. J. Phys. Condens. Matter 21(1), 015003 (2009)

  34. 34.

    Bowden, F., Tabor, D.: The Friction and Lubrication of Solids. Oxford Classic Texts in the Physical Sciences. Clarendon Press, Oxford (2008)

  35. 35.

    Chaudhury, M.K., Whitesides, G.M.: Direct measurement of interfacial interactions between semispherical lenses and flat sheets of poly(dimethylsiloxane) and their chemical derivatives. Langmuir 7(5), 1013 (1991)

  36. 36.

    Mo, Y.F., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457(7233), 1116 (2009)

  37. 37.

    Cheng, S.F., Robbins, M.O.: Defining contact at the atomic scale. Tribol. Lett. 39(3), 329 (2010)

  38. 38.

    Tromborg, J., Scheibert, J., Amundsen, D.S., Thogersen, K., Malthe-Sorenssen, A.: Transition from static to kinetic friction: insights from a 2d model. Phys. Rev. Lett. 107(7), 074301 (2011)

  39. 39.

    Kammer, D., Yastrebov, V., Spijker, P., Molinari. J.F.: . Tribol. Lett. (2012). doi:10.1007/s11.249-012-9920-0

  40. 40.

    Rubinstein, S.M., Cohen, G., Fineberg, J.: Contact area measurements reveal loading-history dependence of static friction. Phys. Rev. Lett. 98(22), 226103 (2007)

  41. 41.

    Varenberg, M., Peressadko, A., Gorb, S., Arzt, E., Mrotzek, S.: Advanced testing of adhesion and friction with a microtribometer. Rev. Sci. Instrum. 77(6), 066105 (2006)

  42. 42.

    Gent, A.N., Marteny, P.: The effect of strain upon the velocity of sound and the velocity of free retraction for natural-rubber. J. Appl. Phys. 53(9), 6069 (1982)

  43. 43.

    James, H.M., Guth, E.: Theory of the retraction of stressed rubber. Phys. Rev. 66(1-2), 33 (1944)

  44. 44.

    Bouchbinder, E., Brener, E.A., Barel, I., Urbakh, M.: Slow cracklike dynamics at the onset of frictional sliding. Phys. Rev. Lett. 107(23), 235501 (2011)

  45. 45.

    Amundsen, D.S., Scheibert, J., Thogersen, K., Tromborg, J., Malthe-Sorenssen, A.: 1d model of precursors to frictional stick-slip motion allowing for robust comparison with experiments. Tribol. Lett. 45(2), 357 (2012)

Download references


M.U. acknowledges support of German-Israeli Project Cooperation Program (DFG-DIP, KL 1948/1-1, GA 309/10). K.B. and R.B. thank E. Arzt for continuous support of this project. This study was supported by the Deutsche Forschungsgemeinschaft within the European Science Foundation project FANAS.

Author information

Correspondence to Roland Bennewitz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (4280 kb)

Supplementary material 2 (4522 kb)

Supplementary material 1 (4280 kb)

Supplementary material 2 (4522 kb)

Supplementary material 3 (PDF 16 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brörmann, K., Barel, I., Urbakh, M. et al. Friction on a Microstructured Elastomer Surface. Tribol Lett 50, 3–15 (2013) doi:10.1007/s11249-012-0044-3

Download citation


  • Stick-slip
  • Static friction
  • Unlubricated friction
  • Elastomers
  • Stress analysis
  • Optical microscopy