Tribology Letters

, Volume 49, Issue 1, pp 61–76 | Cite as

Grafting of Dispersants on MoS2 Nanoparticles in Base Oil Lubrication of Steel

  • Sudhakara Aralihalli
  • Sanjay K. Biswas
Original Paper


Solid lubricant nanoparticles in suspension in oil are good lubricating options for practical machinery. In this article, we select a range of dispersants, based on their polar moieties, to suspend 50-nm molybdenum disulfide particles in an industrial base oil. The suspension is used to lubricate a steel on steel sliding contact. A nitrogen-based polymeric dispersant (aminopropyl trimethoxy silane) with a free amine group and an oxygen-based polymeric dispersant (sorbital monooleate) when grafted on the particle charge the particle negatively and yield an agglomerate size which is almost the same as that of the original particle. Lubrication of the contact by these suspensions gives a coefficient of friction in the ~0.03 range. The grafting of these surfactants on the particle is shown here to be of a chemical nature and strong as the grafts survive mechanical shear stress in tribology. Such grafts are superior to those of other silane-based test surfactants which have weak functional groups. In the latter case, the particles bereft of strong grafts agglomerate easily in the lubricant and give a coefficient of friction in the 0.08–0.12 range. This article investigates the mechanism of frictional energy dissipation as influenced by the chemistry of the surfactant molecule.


Nanoparticle Dispersant Grafting Base oil Nanotribology FTIR 



The authors are grateful to the Hindustan Petroleum Corporation Ltd for the financial support and useful technical discussions which enabled the implementation of this work. They are also grateful to Ms. Arati B Chikorde and Mr. H. S. Shamasundar for their laboratory support.


  1. 1.
    Prasad, S., Zabinski, J.: Lubricants: super slippery solids. Nature 387, 761–763 (1997)CrossRefGoogle Scholar
  2. 2.
    Bakunin, V.N., Suslov, AYu., Kuzmina, G.N., Parenago, O.P., Topchiev, A.V.: Synthesis and application of inorganic nanoparticles as lubricant components—a review. J. Nanopart. Res. 6, 273–284 (2004)CrossRefGoogle Scholar
  3. 3.
    Grossiord, C., Varlot, K., Martin, J.M., Le-Mogne, T., Esnouf, C., Inoue, C.: MoS2 single sheet lubrication by molybdenum dithiocarbamate. Tribol. Int. 31, 737–743 (1998)CrossRefGoogle Scholar
  4. 4.
    Winer, W.O.: Molybdenum disulfide as a lubricant: a review of the fundamental knowledge. Wear 10, 422–452 (1967)CrossRefGoogle Scholar
  5. 5.
    Bahadur, S., Gong, D., Anderegg, J.W.: The investigation of the action of fillers by XPS studies of the transfer films of PEEK and its composites containing CuS and CuF2. Wear 160, 131–138 (1993)CrossRefGoogle Scholar
  6. 6.
    Wang, Q., Xue, Q., Shen, W.: The friction and wear properties of nanometer SiO2 filled poly(ether–ether–ketone). Tribol. Int. 30, 193–197 (1997)CrossRefGoogle Scholar
  7. 7.
    Parenago, O.P., Bakunin, V.N., Kuzmina, G.N., Suslov, AYu., Vedeneeva, L.M.: Molybdenum sulfide nano particles as new-type additives to hydrocarbon lubricants. Dokl. Technol. 383, 86–88 (2002)CrossRefGoogle Scholar
  8. 8.
    Suslov, A.Yu., Bakunin, V.N., Kuz’mina, G. N., Vedeneeva, L. M., Parenago, O.P.: Surface-capped molybdenum sulfide nanoparticles—a novel type of lubricant additives. National Tribology Conference, pp. 254–257 (2003)Google Scholar
  9. 9.
    Sahoo, R.R., Biswas, S.K.: Deformation and friction of MoS2 particles in liquid suspension used to lubricate sliding contact. Thin Solid Films 518, 5995–6005 (2010)CrossRefGoogle Scholar
  10. 10.
    Xiaodong, Z., Danmei, W., Huaqiang, S., Xun, F., Zhengshui, H., Xiaobo, W., Fengyuan, Y.: Study on the tribological properties of surfactant-modified MoS2 micrometer spheres as an additive in liquid paraffin. Tribol. Int. 40, 863–868 (2007)CrossRefGoogle Scholar
  11. 11.
    Huang, H.D., Tu, J.P., Zou, T.Z., Zhang, L.L., He, D.N.: Friction and wear properties if IF-MoS2 as additives in paraffin oil. Tribol. Lett. 20, 247–250 (2005)CrossRefGoogle Scholar
  12. 12.
    Rosentsveig, R., Gorodnev, A., Feuerstein, N., Friedman, H., Zak, A., Fleischer, N., Tannous, J., Dassenoy, F., Tenne, R.: Fullerene-like MoS2 nanoparticles and their tribological behavior. Tribol. Lett. 36, 175–185 (2009)CrossRefGoogle Scholar
  13. 13.
    Cizaire, L., Vacher, B., Le Mogne, T., Martin, J.M., Rapoport, L., Margolin, A., Tenne, T.: Mechanisms of ultra-low friction by hollow inorganic fullerene-like MoS2 nanoparticles. Surf. Coat. Technol. 160, 282–287 (2002)CrossRefGoogle Scholar
  14. 14.
    Hu, K.H., Liu, M., Wang, Q.J., Xu, Y.F., Schraube, S., Hu, X.G.: Tribological properties of molybdenum disulfide nanosheets by monolayer restacking process as additives in liquid paraffin. Tribol. Int. 42, 33–39 (2009)CrossRefGoogle Scholar
  15. 15.
    Sahoo, R.R., Biswas, S.K.: Microtribology and friction-induced material transfer in layered MoS2 nano particles sprayed on a steel surface. Tribol. Lett. 37, 313–326 (2010)CrossRefGoogle Scholar
  16. 16.
    Steigerwald, M.L., Alivisatos, A.P., Brus, L.E.: Surface derivatization and isolation of semiconductor cluster molecules. J. Am. Chem. Soc. 110, 3046–3050 (1988)CrossRefGoogle Scholar
  17. 17.
    Steigerwald, M.L., Brus, L.E.: Semiconductor crystallites: a class of large molecules. Acc. Chem. Res. 23, 183–188 (1990)CrossRefGoogle Scholar
  18. 18.
    Trindade, T., O’Brien, P., Zhang, X-m: Synthesis of CdS and CdSe nanocrystallites using a novel single-molecule precursors approach. Chem. Mater. 9, 523–530 (1997)CrossRefGoogle Scholar
  19. 19.
    Zhang, Z., Zhang, J., Xue, Q.J.: Synthesis and characterization of a molybdenum disulfide nanocluster. J. Phys. Chem. 98, 12973–12977 (1994)CrossRefGoogle Scholar
  20. 20.
    Herron, N., Wang, Y., Eckert, H.: Synthesis and characterization of surface-caped, size quantized cadmium sulfide clusters. Chemical control of cluster size. J. Am. Chem. Soc. 112, 1322–1326 (1990)CrossRefGoogle Scholar
  21. 21.
    Schmidt, H.K.: Chemical routes to nanostructured ceramics and composites. Applications of Organometallic Chemistry in the Preparation and Processing of Advanced Materials, NATOASI Series, Series E, vol. 297, pp. 47–67. Kluwer Academic, Boston (1995)Google Scholar
  22. 22.
    Tahir, M.N., Zink, N., Eberhardt, M., Therese, H.A., Kolb, U., Theato, P., Tremel, W.: Overcoming the insolubility of molybdenum disulfide nanoparticles through a high degree of sidewall functionalization using polymeric chelating ligands. Angew. Chem. Int. Ed. 45, 4809–4815 (2006)CrossRefGoogle Scholar
  23. 23.
    Singer, I.L.: Mechanics and chemistry of solids in sliding contact. Langmuir 12, 4486–4491 (1996)CrossRefGoogle Scholar
  24. 24.
    Wahl, K.J., Singer, I.L.: Quantification of a lubricant transfer process that enhances the sliding life of a MoS2 coating. Tribol. Lett. 1, 59–66 (1995)CrossRefGoogle Scholar
  25. 25.
    Seifert, W.K., Howells, W.G.: Interfacially active acids in a California crude oil. Isolation of carboxylic acids and phenols. Anal. Chem. 41, 554 (1969)CrossRefGoogle Scholar
  26. 26.
    Sheu, E.Y., De Tar, M.M., Storm, D.A.: Interfacial properties of asphaltenes. Fuel 71, 1277–1281 (1992)CrossRefGoogle Scholar
  27. 27.
    Schramm, L.L.: Fundamental and applications in the petroleum industry. Adv. Chem. 231, 3–24 (1992)Google Scholar
  28. 28.
    Acevedo, S., Escobar, G., Gutierrez, L., Rivas, H.: Isolation and characterization of natural surfactants from extra heavy crude oils, asphaltenes and maltenes. Interpretation of their interfacial tension-pH behaviour in terms of ion pair formation. Fuel 71, 619–623 (1992)CrossRefGoogle Scholar
  29. 29.
    Cristante, M.J., Selves, L., Grassy, G., Orrit, J., Garland, F.: Choice of paraffin inhibitors for crude oils by principle component analysis. Anal. Chim. Acta 229, 267–276 (1990)CrossRefGoogle Scholar
  30. 30.
    Cristante, M., Selves, J.L., Grassy, G., Colin, J.P.: Structure activity relationship study on paraffin inhibitors for crude oils (INIPAR model II). Anal. Chim. Acta 274, 303–316 (1993)CrossRefGoogle Scholar
  31. 31.
    Desai, J.D., Banat, I.M.: Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev. 61, 47–64 (1997)Google Scholar
  32. 32.
    Moshkovith, A., Perfiliev, V., Lapsker, I., Fleischer, N., Tenne, R., Rapoport, L.: Friction of fullerene-like WS2 nanoparticles: effect of agglomeration. Tribol. Lett. 24(3), 225–228 (2006)CrossRefGoogle Scholar
  33. 33.
    Gokcen, Y.C., Belma, A., Yavuz, B.J.: Enhanced crude oil biodegradation and rhamnolipid production by Pseudomonas stutzeri strain G11 in the presence of Tween-80 and Triton X-100. Environ. Biol. 29(6), 867–870 (2008)Google Scholar
  34. 34.
    Ewa, A., Gordon, B., Lamb, D.: Additives for CranKcase lubricant applications. In: Rudnick, L.R. (ed.) Lubricant Additives: Chemistry and Applications, pp. 387–428. Marcel Dekker, Inc., New York, Basel (2003)Google Scholar
  35. 35.
    Lee, F.L., Harris, J.W.: Additives for CranKcase lubricant applications. In: Rudnick, L.R. (ed.) Lubricant Additives: Chemistry and Applications, pp. 557–587. Marcel Dekker, Inc., New York, Basel (2003)Google Scholar
  36. 36.
    Lee, J.D.: Concise of Inorganic Chemistry. Blackwell, Noida (2005)Google Scholar
  37. 37.
    Sahoo, R.R., Math, S., Biswas, S.K.: Mechanics of deformation under traction and friction of a micrometric monolithic MoS2 particle in comparison with those of an agglomerate of nanometric MoS2 particles. Tribol. Lett. 37, 239–249 (2010)CrossRefGoogle Scholar
  38. 38.
    Hagen, J.: Industrial Catalysis: A Practical Approach. Wiley-VCH GmbH & Co. KGaA, Weinheim (2006)Google Scholar
  39. 39.
    Rizvi, S.Q.A.: Lubricant Additives: Chemistry and Applications, pp. 138–170. Marcel Dekker, Inc., New York (2003)Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Nanotribology Lab, Department of Mechanical EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations