Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Contact of a Finger on Rigid Surfaces and Textiles: Friction Coefficient and Induced Vibrations


The tactile information about object surfaces is obtained through perceived contact stresses and friction-induced vibrations generated by the relative motion between the fingertip and the touched object. The friction forces affect the skin stress-state distribution during surface scanning, while the sliding contact generates vibrations that propagate in the finger skin activating the receptors (mechanoreceptors) and allowing the brain to identify objects and perceive information about their properties. In this article, the friction coefficient between a real human finger and both rigid surfaces and fabrics is retrieved as a function of the contact parameters (load and scanning speed). Then, the analysis of the vibration spectra is carried out to investigate the features of the induced vibrations, measured on the fingernail, as a function of surface textures and contact parameters. While the friction coefficient measurements on rigid surfaces agree with empirical laws found in literature, the behaviour of the friction coefficient when touching a fabric is more complex, and is mainly the function of the textile constructional properties. Results show that frequency spectrum distribution, when touching a rigid surface, is mainly determined by the relative geometry of the two contact surfaces and by the contact parameters. On the contrary, when scanning a fabric, the structure and the deformation of the textile itself largely affect the spectrum of the induced vibration. Finally, some major features of the measured vibrations (frequency distribution and amplitude) are found to be representative of tactile perception compared to psychophysical and neurophysiologic works in literature.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17


  1. 1.

    Johansson, R. S.: Tactile sensibility in man. A quantitative study of the population of mechanoreceptive units in the glabrous skin area of the hand. Umea University Medical Dissertations, New Series No. 35 (1978)

  2. 2.

    Lumpkin, E. A., Caterina, M. J.: Mechanisms of sensory transduction in the skin. Nature 445 (2007). doi:10.1038/nature05662

  3. 3.

    Lynn, B., Perl, E.R.: Afferent mechanisms of pain. In: Kruger, L. (ed.) Pain and Touch, pp. 213–241. Academic Press, San Diego (1996)

  4. 4.

    Spray, D.C.: Cutaneous temperature receptors. Annu. Rev. Physiol. 48, 625–638 (1986)

  5. 5.

    Johnson, K.O.: The roles and functions of cutaneous mechanoreceptors. Curr. Opin. Neurobiol. 11, 455–461 (2001)

  6. 6.

    Bolanowski, S.J., Gescheider, G.A., Verrillo, R.T., Checkosky, C.M.: Four channels mediate the mechanical aspects of touch. J. Acoust. Soc. Am. 84, 1680–1694 (1988)

  7. 7.

    Maeno, T., Kobayashi, K., Yamazaki, N.: Relationship between the structure of human finger tissue and the location of tactile receptors. Bull. JSME Int. J. 41(1C), 4–100 (1998)

  8. 8.

    Johnson, K.O., Yoshioka, T., Vega-Bermudez, F.: Tactile functions of mechanoreceptive afferents innervating the hand. J. Clin. Neurophysiol. 17, 539–558 (2000)

  9. 9.

    Jenmailm, P., Bierznierks, I., Goodwin, A.W., Johansson, R.S.: Influence of object shape on responses of human tactile afferents under conditions characteristic of manipulation. Eur. J. Neurosci. 18, 164–176 (2003)

  10. 10.

    Goodwin, A.W., John, K.T., Marceglia, A.H.: Tactile discrimination of curvature by humans using only cutaneous information from the fingerpads. Exp. Brain Res. 86, 663–672 (1991)

  11. 11.

    Goodwin, A.W., Wheat, H.E.: Magnitude estimation of contact force when objects with different shapes are applied passively to the fingerpad. Somatosens. Mot. Res. 9, 339–344 (1992)

  12. 12.

    Vega-Bermudez, F., Johnson, K.O.: SA I and RA receptive fields, responses variability, and population responses mapped with a probe array. J. Neurophysiol. 81, 2701–2710 (1999)

  13. 13.

    Talbot, W.H., Darian-Smith, I., Kornhuber, H., Mountcastle, V.B.: The sense of flutter-vibration: comparison of the human capacity with response patterns of mechanoreceptive afferents from the monkey hand. J. Neurophysiol. 31, 301–334 (1968)

  14. 14.

    Brisben, A.J., Hsiao, S.S., Johnson, K.O.: Detection of vibration transmitted through an object grasped in a hand. J. Neurophysiol. 81, 1548–1558 (1999)

  15. 15.

    Bolanowski, S.J., Gescheider, G.A., Verrillo, R.T.: Hairy skin: psychophysical channels and their physiological substrates. Somatosens. Mot. Res. 11, 279–290 (1994)

  16. 16.

    Olausson, H., Wessberg, J., Kakuda, N.: Tactile directional sensibility: peripheral neural mechanisms in man. Brain Res. 866, 178–187 (2000)

  17. 17.

    Edin, B.B., Westling, G., Johansson, R.S.: Independent control of human fingertip forces at individual digits during precision lifting. J. Physiol. 487, 243–251 (1995)

  18. 18.

    Collins, D.F., Prochazka, A.: Movement illusions evoked by ensemble cutaneous input from the dorsum of the human hand. J. Neurophysiol. 496, 857–871 (1996)

  19. 19.

    Hollins, M., Goble, A.: Perception of the length of voluntary movements. Somatosens. Res. 5, 335–348 (1988)

  20. 20.

    Hollins, M., Bensmaia, S. J., Risner, R.: The duplex theory of tactile texture perception. In: Proceedings of Fourteenth Annual Meeting of the International Society for Psychophysics, pp. 115–120 (1998)

  21. 21.

    Hollins, M., Bensmaia, S.J., Karlof, K., Young, F.: Individual differences in perceptual space for tactile textures: evidence from multidimensional scaling. Percept. Psychophys. 62, 1534–1544 (2000)

  22. 22.

    Hollins, M., Risner, R.: Evidence for the duplex theory of tactile texture perception. Percept. Psychophys. 62(4), 695–705 (2000)

  23. 23.

    Hollins, M., Bensmaia, S.J., Wahburn, S.: Vibrotactile adaptation impairs discrimination of fine, but not coarse, textures. Somatosens. Mot. Res. 18, 253–262 (2001)

  24. 24.

    Hollins, M., Fox, A., Bishop, C.: Imposed vibration influences perceived tactile smoothness. Perception 29, 1455–1465 (2000)

  25. 25.

    Hollins, M., Lorenz, F., Harper, D.: Somatosensory coding of roughness: the effect of texture adaptation in direct and indirect touch. J. Neurosci. 26, 5582–5588 (2006)

  26. 26.

    Gescheider, G.A., Wright, J.H.: Effects of sensory adaptation on the form of the psychophysical magnitude function for cutaneous vibration. J. Exp. Psychol. 77, 308–313 (1968)

  27. 27.

    Lederman, S.J., Taylor, M.M.: Fingertip force, surface geometry, and perception of roughness by active touch. Percept. Psychophys. 12(5), 401–408 (1972)

  28. 28.

    Lederman, S.J., Loomis, J.M., Williams, D.A.: The role of vibration in the tactual perception of roughness. Percept. Psychophys. 32(2), 109–116 (1982)

  29. 29.

    Lederman, S.J.: Tactual roughness perception: spatial and temporal determinants. Can. J. Psychol. 37(4), 498–511 (1983)

  30. 30.

    Bensmaia, S.J., Hollins, M.: The vibrations of texture. J. Somatosens. Mot. Res. 20(1), 33–43 (2003)

  31. 31.

    Scheibert, J., Leurent, S., Prevost, A., Debregeas, G.: The role of fingerprints in the coding of tactile information probed with a biomimetic sensor. Science 323(5920), 1503–1506 (2009). doi:10.1126/science.1166467

  32. 32.

    Fagiani, R., Massi, F., Chatelet, E., Berthier, Y., Akay, A.: Tactile perception by friction induced vibrations. Tribol Int. 44(10), 1100–1110 (2011)

  33. 33.

    Tang, W., Ge, S., Zhu, H., Cao, X., LI, N.: The Influence of normal load and sliding speed on frictional properties of skin. J. Bionic Eng. 5, 33–38 (2008)

  34. 34.

    Asserin, J., Zahouani, H., Humbert, Ph., Couturaud, V., Mougin, D.: Measurements of the friction coefficient of the human skin in vivo. Quantification of the cutaneous smoothness. Colloids Surf. 19, 1–12 (2000)

  35. 35.

    Derler, A., Schrade, U., Gerhardt, L.C.: Tribology of human skin and mechanical skin equivalents in contact with textiles. J. Wear 263, 1112–1116 (2007)

  36. 36.

    Sivamani, R.K., Goodman, J., Gitis, N., Maibach, H.I.: Friction coefficient of skin in real-time. Skin Res. Technol. 9, 235–239 (2003)

  37. 37.

    Lobontiu, N.: Compliant Mechanisms Design of Flexure Hinges. CRC Press, Boca Raton (2002)

  38. 38.

    Fagiani, R., Massi, F., Chatelet, E., Berthier, Y., Sestieri, A.: Experimental analysis of friction induced vibrations at the finger contact surface. In: Proceedings of the Institution of Mechanical Engineers. J. Eng. Tribol. (2009). doi:10.1243/13506501JET722

  39. 39.

    Tang, W., Bhushan, B.: Adhesion, friction and wear characterization of skin and skin cream using atomic force microscope. Colloids Surf. B 76, 1–15 (2010)

  40. 40.

    El-Shimi, A.F.: In vivo skin friction measurements. J. Soc. Cosmet. Chem. 28, 37–51 (1977)

  41. 41.

    Koudine, A., Barquins, M., Barquins, M., Anthoine, P.H., Aubert, L., Leveque, J.L.: Friction properties of skin: proposal of a new approach. Int. J. Cosmet. Sci. 22, 11–20 (2000)

  42. 42.

    Han, H. Y., Shimada, A., Kawamura, S.: Analysis of friction on human fingers and design of artificial fingers. In: Proceedings of the 1996 IEEE International Conference on Robotics and Automation Minneapolis, Minnesota, April (1996)

  43. 43.

    Koc, I. M., Aksu, C.: Tactile sensing of constructional differences in fabrics with a polymeric fingertip. Tribol Int (2012).

Download references

Author information

Correspondence to Francesco Massi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fagiani, R., Massi, F., Chatelet, E. et al. Contact of a Finger on Rigid Surfaces and Textiles: Friction Coefficient and Induced Vibrations. Tribol Lett 48, 145–158 (2012).

Download citation


  • Tactile perception
  • Mechanoreceptors
  • Textiles
  • Friction-induced vibrations
  • Friction coefficient