Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Experimental Research on Force Transmission of Dense Granular Assembly Under Shearing in Taylor–Couette Geometry

  • 297 Accesses

  • 7 Citations


Considering the difficulties in experimental research on journal bearings under granular lubrication, we have designed and developed a Taylor–Couette geometry tester to study granule behavior under shearing. Surface structure, granularity, granular material, filling amount, gap eccentricity, and granular distribution are considered in our experiments. The measured torque, which is transmitted from the inner to the outer cylinder, reveals the effect of these input parameters on force transmission behavior. Results show that a rough surface, a high filling amount, a heavy material, and a eccentricity geometry increase the measured torque. The effects of granularity, cylinder–granule slip, granule distribution, and torque mutation are discussed as well. Force transmission is directly affected by cylinder–granule contact and force transmission path in granule assembly. The cylinder and granule contact occurs through the cylinder–granule slip and granular collision. The force transmission path in the granule assembly is dependent on the formation or breakage of the arch and the force chain, which is closely related to flow state. In the article, some direct links between the experimental results and the optimization of an actual granular lubricated journal bearing are provided.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Wornyoh, E.Y.A., Jasti, V.K., Higgs, C.F.: A review of dry particulate lubrication: powder and granular materials. J. Tribol. 129, 438–449 (2007)

  2. 2.

    Khonsari, M.M.: On the modeling of multi-body interaction problems in tribology. Wear 207, 55–62 (1997)

  3. 3.

    Iordanoff, I., Berthier, Y., Descartes, S., Heshmat, H.: A review of recent approaches for modeling solid third bodies. J. Tribol. 124, 725–735 (2002)

  4. 4.

    Renouf, M., Cao, H.P., Nhu, V.H.: Multiphysical modeling of third-body rheology. Tribol. Int. 44, 417–425 (2011)

  5. 5.

    Wornyoh, E.Y.A., Higgs, C.F.: An asperity-based fractional coverage model for transfer films on a tribological surface. Wear 270, 127–139 (2011)

  6. 6.

    Heshmat, H.: The effect of slider geometry on the performance of a powder lubricated bearing—theoretical considerations. Tribol. Trans. 43, 213–220 (2000)

  7. 7.

    Heshmat, H., Godet, M., Berthier, Y.: On the role and mechanism of dry triboparticulate lubrication. Lubric. Eng. 51, 557–564 (1995)

  8. 8.

    Heshmat, H.: The quasi-hydrodynamic mechanism of powder lubrication. 3: on theory and rheology of triboparticulates. Tribol. Trans. 38, 269–276 (1995)

  9. 9.

    Higgs, C.F., Wornyoh, E.X.A.: An in situ mechanism for self-replenishing powder transfer films: experiments and modeling. Wear 264, 131–138 (2008)

  10. 10.

    Lovell, M.R., Kabir, M.A., Menezes, P.L., Higgs, C.F.: Influence of boric acid additive size on green lubricant performance. Philos. Trans. R. Soc. A 368, 4851–4868 (2010)

  11. 11.

    Wang, W., Liu, X.J., Xie, T., Liu, K.: Effects of sliding velocity and normal load on tribological characteristics in powder lubrication. Tribol. Lett. 43, 213–219 (2011)

  12. 12.

    Wang, W., Liu, X.J., Liu, K., Li, H.X.: Experimental study on the tribological properties of powder lubrication under plane contact. Tribol. Trans. 53, 274–279 (2010)

  13. 13.

    Batista-Leyva, A.J., Pacheco-Vazquez, F., Ruiz-Suarez, J.C.: Role of density in granular lubrication. Phys. Rev. E 82, 031304 (2010)

  14. 14.

    Tichy, J., Berthier, Y., Iordanoff, I.: A continuum description of dense granular lubrication flow. J. Tribol. 130, 031301 (2008)

  15. 15.

    Iordanoff, I., Elkholy, K., Khonsari, M.M.: Effect of particle size dispersion on granular lubrication regimes. Proc. IME. J J. Eng. Tribol. 222, 725–739 (2008)

  16. 16.

    Jang, J.Y., Khonsari, M.M.: On the granular lubrication theory. Proc. R. Soc. A 461, 3255–3278 (2005)

  17. 17.

    Jasti, V.K., Higgs, C.F.: A fast first order model of a rough annular shear cell using cellular automata. Granul. Matter 12, 97–106 (2010)

  18. 18.

    Kabir, M.A., Lovell, M.R., Higgs, C.F.: Utilizing the explicit finite element method for studying granular flows. Tribol. Lett. 29, 85–94 (2008)

  19. 19.

    Higgs, C.F., Tichy, J.: Granular flow lubrication: continuum modeling of shear behavior. J. Tribol. 126, 499–510 (2004)

  20. 20.

    Heshmat, H.: Tribology of Interface Layers. CRC Press, Boca Raton (2010)

  21. 21.

    Jaeger, H.M., Nagel, S.R.: Physics of the granular state. Science 255, 1523–1531 (1992)

  22. 22.

    Jop, P., Forterre, Y., Pouliquen, O.: A constitutive law for dense granular flows. Nature 441, 727–730 (2006)

  23. 23.

    Campbell, C.S.: Granular material flows—an overview. Powder Technol. 162, 208–229 (2006)

  24. 24.

    Kabir, M.A., Jasti, V.K., Higgs, C.F., Lovell, M.R.: An evaluation of the explicit finite-element method approach for modelling dense flows of discrete grains in a couette shear cell. Proc. IME. J J. Eng. Tribol. 222, 715–723 (2008)

  25. 25.

    Higgs, C.F., Tichy, J.: Effect of particle and surface properties on granular lubrication flow. Proc. IME. J J. Eng. Tribol. 222, 703–713 (2008)

  26. 26.

    Iordanoff, I., Khonsari, M.M.: Granular lubrication: toward an understanding of the transition between kinetic and quasi-fluid regime. J. Tribol.-Trans. ASME 126, 137–145 (2004)

  27. 27.

    Yu, C.M., Craig, K., Tichy, J.: Granular collision lubrication. J. Rheol. 38, 921–936 (1994)

  28. 28.

    Yu, C.M., Tichy, J.: Granular collisional lubrication: effect of surface roughness, particle size and solids fraction. Tribol. Trans. 39, 537–546 (1996)

  29. 29.

    Elkholy, K.N., Khonsari, M.M.: Granular collision lubrication: experimental investigation and comparison to theory. J. Tribol. 129, 923–932 (2007)

  30. 30.

    Elkholy, K.N., Khonsari, M.M.: Experimental investigation on the stick–slip phenomenon in granular collision lubrication. J. Tribol. 130, 021302 (2008)

  31. 31.

    Jasti, V., Higgs, C.F.: Experimental study of granular flows in a rough annular shear cell. Phys. Rev. E 78, 041306 (2008)

  32. 32.

    Marinack, M.C., Jasti, V.K., Choi, Y.E., Higgs, C.F.: Couette grain flow experiments: the effects of the coefficient of restitution, global solid fraction, and materials. Powder Technol. 211, 144–155 (2011)

Download references


The authors wish to thank the financial support from the National Natural Science Foundation of China under Grant No. 51005067 and Grant No. 51175136.

Author information

Correspondence to Wei Wang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, W., Liu, X. & Liu, K. Experimental Research on Force Transmission of Dense Granular Assembly Under Shearing in Taylor–Couette Geometry. Tribol Lett 48, 229–236 (2012). https://doi.org/10.1007/s11249-012-0009-6

Download citation


  • Particulates
  • Stick–slip
  • Journal bearings
  • Contact mechanics