Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

In Situ Film-Forming and Friction-Reduction Mechanisms for Carbon-Nanotube Dispersions in Lubrication

  • 538 Accesses

  • 23 Citations

Abstract

Current requirements in automotive lubrication impose extremely complex formulation. For environmental reasons, it is important to reduce or eliminate the presence of sulphur and phosphorus contained in tribological additives. For that purpose, multi-walled carbon nanotubes have been dispersed in oil in various concentrations. The lubrication mechanisms of such dispersions in mixed and EHL regimes have been investigated by means of the IRIS tribometer that allows us simultaneous contact visualization, film thickness and friction measurement under controlled contact kinematics. The lubricant film-forming capability has been determined as a function of the entrainment velocity and the nanotube content: the presence of carbon nanotubes within the contact results in a local increase in the film thickness and it can be shown that the contact acts as a filter of carbon-nanotube aggregates. Introduction of sliding results in a diminution of the number of aggregates passing through the contact. Moreover, a reduction in friction and a drift in the wear onset have been observed under controlled contact kinematics: this behaviour originates from the transient propagation of carbon-nanotube aggregates through the contact and a friction law is proposed taking into account the contact heterogeneity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. 1.

    Chinas-Castillo, F., Spikes, H.A.: Mechanism of action of colloidal solid dispersions. J. Tribol. 125, 552–557 (2003)

  2. 2.

    Chinas-Castillo, F., Spikes, H.A.: The behavior of diluted sooted oils in lubricated contacts. Tribol. Lett. 16, 317–322 (2004)

  3. 3.

    Colacicco, Ph.: Role de l’agrégation des suies sur la lubrification des moteurs diesel. PhD thesis, École Centrale de Lyon (1992)

  4. 4.

    Colacicco, Ph, Mazuyer, D.: The role of soot aggregation on the lubrication of diesel engines. Tribol Trans. 38, 959–965 (1995)

  5. 5.

    Varenne, E.: Usure de la distribution d’un moteur diesel. PhD thesis, École Centrale de Lyon (1996)

  6. 6.

    Meunier, C.: Vieillissement des lubrifiants et compréhension des mécanismes de dégradation: application à la zone segment-piston-chemise. PhD thesis, École Centrale de Lyon (2008)

  7. 7.

    Meunier, C., Mazuyer, D., Vergne, Ph, El Fassi, M., Obiols, J.: Correlation between the film forming ability and rheological properties of new and aged low sulfated ash, phosphorus and sulfur (Low SAPS) automotive lubricants. Tribol Trans. 52, 501–510 (2009)

  8. 8.

    Ostwald, W.: An Introduction to theoretical and applied colloid chemistry, 2nd edn. Wiley, New York (1922)

  9. 9.

    Israelachvili, J.: Intermolecular and surface forces, 2nd edn. Academic Press, London (1991)

  10. 10.

    Cusano, C., Sliney, H.E.: Dynamics of solid dispersions in oil during the lubrication of point contacts. ASLE Trans. 25, 183–189 (1981)

  11. 11.

    Palios, S., Cann, P.M, Spikes, H.A.: Behaviour of PTFE suspensions in rolling/sliding contacts. In: Dowson, D., et al. Proceedings of Leeds Lyon 22. Tribology Series, vol. 31, pp. 141–152. Elsevier (1996)

  12. 12.

    Wan, G.T.Y., Spikes, H.A.: The behavior of suspended solid particles in rolling and sliding EHL contacts. STLE Trans. 31, 12–21 (1988)

  13. 13.

    Genin, C.: Optimisation de systèmes colloidaux en phase aqueuse pour la lubrification en conditions extremes: application au tréfilage. PhD thesis, École Centrale de Lyon (2007)

  14. 14.

    Genin, C., Mazuyer, D., Monin, D.: Study of the influence of the interactions between wax particles and surfaces on the properties of thin lubricating films in a high-pressure contact. Tribol Trans. 50, 374–386 (2007)

  15. 15.

    Hollinger, S., Georges, J.M., Mazuyer, D., Lorentz, G., Aguerre, O., Nguyen, Du: High pressure lubrication with lamellar structures in aqueous lubricant. Tribol. Lett. 9(3–4), 143–151 (2000)

  16. 16.

    Rapoport, L., Leshchinsky, V., Lapsker, I., Volovik, Y., Nepomnyashchy, O., Lvovsky, M., Popovitz-Biro, R., Feldman, Y., Tenne, R.: Tribological properties of WS2 nanoparticles under mixed lubrication. Wear 255, 785–793 (2003)

  17. 17.

    Radice, S., Milscher, S.: Effect of electrochemical and mechanical parameters on the lubrication behaviour of Al2O3 nanoparticles in aqueous suspensions. Wear 261, 1032–1041 (2006)

  18. 18.

    Hu, Z.S., Lai, R., Lou, F., Wang, L.G., Chen, Z.L., Dong, J.X.: Preparation and tribological properties of nanometer magnesium borate as lubricating oil additive. Wear 252, 370–374 (2002)

  19. 19.

    Zhou, X.: Study on the tribological properties of surfactant-modified MoS2 micrometer spheres as an additive in liquid paraffin. Tribol Int. 40, 863–868 (2007)

  20. 20.

    Dong, J.X., Hu, Z.S.: A study of the anti-wear and friction-reducing properties of the lubricant additive nanometer zinc borate. Tribol Int. 31, 219–223 (1998)

  21. 21.

    Hu, Z.S., Dong, J.X.: Study on antiwear and reducing friction additive of nanometer titanium oxide. Wear 216, 92–96 (1998)

  22. 22.

    Hu, Z.S., Dong, J.X., Chen, Z.L.: Study on antiwear and reducing friction additive of nanometer ferric oxide. Tribol Int. 31, 355–360 (1998)

  23. 23.

    Cizaire, L.: Lubrification limite par les nanoparticules. PhD thesis, École Centrale de Lyon (2003)

  24. 24.

    Joly-Pottuz, L.: Nanoparticules lubrifiantes à structure fermée. PhD thesis, École Centrale de Lyon (2006)

  25. 25.

    Rapoport, L., Leshchinsky, V., Lapsker, I., Verdyan, A., Moshkovich, A., Feldman, Y., Tenne, R.: Behavior of fullerene-like WS2 nanoparticles under severe contact conditions. Wear 259, 703–707 (2005)

  26. 26.

    Rosentsveig, R., Gorodnev, A., Feuerstein, N., Friedman, H., Zak, A., Fleischer, N., Tannous, J., Dassenoy, F., Tenne, R.: Fullerene-like MoS2 nanoparticles and their tribological behavior. Tribol. Lett. 36, 175–182 (2009)

  27. 27.

    Tannous, J., Dassenoy, F., Lahouij, I., Le-Mogne, T., Vacher, B., Bruhacs, A., Tremel, W.: Understanding the tribological mechanisms of IF-MoS2 nanoparticles under boundary lubrication. Tribol. Lett. 41, 55–64 (2011)

  28. 28.

    Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., Smalley, R.E.: C60: Buckminsterfullerene. Nature 318, 162–163 (1985)

  29. 29.

    Chauveau, V.: Le pouvoir lubrifiant des nanotubes de carbone. PhD thesis, École Centrale de Lyon (2010)

  30. 30.

    Bushan, B., Gupta, B.K., Van Cleef, G.W., Capp, C., Coe, J.V.: Fullerenes C60 films for solid lubrication. Tribol Trans. 36, 573–580 (1993)

  31. 31.

    Bushan, B., Gupta, B.K., Van Cleef, G.W., Capp, C., Coe, J.V.: Sublimed C60 films for tribology. Appl. Phys. Lett. 62, 3253–3255 (1993)

  32. 32.

    Tannous, J., Dassenoy, F., Bruhacs, A., Tremel, W.: Synthesis and tribological performance of novel MoxW1−x S2 (0 ≤ x≤1) inorganic fullerenes. Tribol. Lett. 37, 83–92 (2010)

  33. 33.

    Falvo, M.R., Taylor II, R.M., Helser, A., Chi, V., Brooks Jr, F.P., Washburn, S., Superfine, R.: Nanometre-scale rolling and sliding of carbon nanotubes. Nature 397, 236–238 (1999)

  34. 34.

    Ohmae, N., Martin, J.M., Mori, S.: Micro and nanotribology. ASME Press, New York (2005)

  35. 35.

    Mylvaganam, K., Zhang, L.C., Xiao, K.Q.: Origin of friction in films of horizontally oriented carbon nanotubes sliding against diamond. Carbon 47, 1693–1700 (2000)

  36. 36.

    Ni, B., Sinnott, S.: Tribological properties of carbon nanotube bundles predicted from atomistic simulations. Surf. Sci. 487, 87–96 (2001)

  37. 37.

    Buldum, A., Lu, J.P.: Atomic scale sliding and rolling of carbon nanotubes. Phys. Rev. Lett. 83, 5050–5053 (1999)

  38. 38.

    Chen, C.S., Chen, X.H., Hu, J., Zhang, H., Xu, L.S., Yang, Z.: Effect of multi-walled carbon nanotubes on tribological properties of lubricant. Trans. Nonferrous Met. Soc. China 15, 300–305 (2005)

  39. 39.

    Chen, C.S., Chen, X.H., Xu, L.S., Yang, Z., Li, W.H.: Modification of multi-walled carbon nanotubes with fatty acid and their tribological properties as lubricant additive. Carbon 43, 1660–1665 (2005)

  40. 40.

    Saint-Aubin, K., Poulin, Ph, Saadaoui, H., Maugey, M., Zakri, C.: Dispersion and film-forming properties of poly(acrylic acid)-stabilized carbon nanotubes. Langmuir 25, 13206–13211 (2009)

  41. 41.

    Bou-Chakra, E., Cayer-Barrioz, J., Mazuyer, D., Jarnias, F., Bouffet, A.: A non-Newtonian model based on Ree–Eyring theory and surface effect to predict friction in elastohydrodynamic lubrication. Tribol Int. 43, 1674–1682 (2010)

  42. 42.

    Fay, H., Cayer-Barrioz, J., Mazuyer, D., Mondain-Monval, O., Ponsinet, V., Meeker, S.: Lubrication mechanisms of lamellar fatty acid fluids. Tribol. Lett. 46, 285–297 (2012)

  43. 43.

    Bouré, Ph.: Lubrification et usure du contact fil/outil en tréfilage humide. PhD thesis, École Centrale de Lyon (1999)

  44. 44.

    De Vicente, J., Stokes, J.R., Spikes, H.A.: The frictional properties of Newtonian fluids in rolling–sliding soft-EHL contact. Tribol. Lett. 20, 273–286 (2005)

  45. 45.

    Hamrock, B.J., Dowson, D.: Isothermal elastohydrodynamic lubrication of point contacts. NASA Technical notes D8318, 1–31 (1976)

  46. 46.

    Reddyhoff, T., Spikes, H.A., Choo, J.H., Glovnea, R.P.: Lubricant flow in an elastohydrodynamic contact using fluorescence. Tribol. Lett. 38, 207–215 (2010)

  47. 47.

    Hamrock, B.J., Schmid, S.R., Jacobson, B.O.: Fundamentals of fluid film lubrication, 2nd edn. Marcel Dekker, Inc, New York (2004)

  48. 48.

    Tipei, N.: Boundary conditions of a viscous flow between surfaces with rolling and sliding motion. J. Lubr. Technol. F 90, 254–261 (1968)

  49. 49.

    De Gennes, P.G.: Scaling concepts in polymer physics. Cornell University Press, New York (1979)

Download references

Acknowledgments

The authors acknowledge Prof. Hugh Spikes from Imperial College London for fruitful discussions. We thank Dr. Julien Amadou from Nanocyl and Dr. Raphaèle Iovine from Total France for technical and financial supports. Thanks are also due to the CLYM—http://clym.insa-lyon.fr—for the access to the 2010F microscope and Béatrice Vacher for technical support.

Author information

Correspondence to J. Cayer-Barrioz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chauveau, V., Mazuyer, D., Dassenoy, F. et al. In Situ Film-Forming and Friction-Reduction Mechanisms for Carbon-Nanotube Dispersions in Lubrication. Tribol Lett 47, 467–480 (2012). https://doi.org/10.1007/s11249-012-0006-9

Download citation

Keywords

  • Additives
  • EHL
  • Friction mechanisms