Tribology Letters

, Volume 45, Issue 3, pp 417–426 | Cite as

Analytical Model for Plowing Friction at Nanoscale

Original Paper

Abstract

Existing analytical models for elastic–plastic friction, which have been developed for microscale single-asperity contacts, do not apply when the contact dimensions are reduced to the nanometer regime. We demonstrate that although the microscale models correctly describe elastic recovery behind a sliding nanoscale tip, they fail to predict the corresponding coefficient of friction. We show that the breakdown of microscale models can be attributed to the large contribution to friction from pileup. We propose an analytical model for plowing friction for single-asperity contacts, which includes the effects of both elastic recovery and pileup. Functional dependence of the average pileup height on elastic properties of the worn material and on the depth of cut is also proposed. Applicability of the new model is demonstrated in the examples of SiC and Cu.

Keywords

Plowing friction Elastic–plastic contacts Single-asperity friction Silicon carbide Copper 

References

  1. 1.
    Szlufarska, I., Chandross, M., Carpick, R.W.: Recent advances in single-asperity nanotribology. J. Phys. D 41, 123001 (2008)CrossRefGoogle Scholar
  2. 2.
    Bhushan, B.: Nanotribology and nanomechanics. Wear 259, 1507–1531 (2005)CrossRefGoogle Scholar
  3. 3.
    Luan, B.Q., Robbins, M.O.: The breakdown of continuum models for mechanical contacts. Nature 435, 929–932 (2005)CrossRefGoogle Scholar
  4. 4.
    Mo, Y., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457, 1116–1119 (2009)CrossRefGoogle Scholar
  5. 5.
    Liu, Y., Szlufarska, I.: Effect of trace moisture on friction. Appl. Phys. Lett. 91, 101902 (2010)CrossRefGoogle Scholar
  6. 6.
    Bhaskaran, H., Gotsmann, B., Sebastian, A., Drechsler, U., Lantz, M.A., Despont, M., Jaroenapibal, P., Carpick, R.W., Chen, Y., Sridharan, K.: Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon. Nat. Nanotechnol. 5, 181–185 (2010)CrossRefGoogle Scholar
  7. 7.
    Bennewitz, R., Dickinson, J.T.: Fundamental studies of nanometer-scale wear mechanisms. MRS Bull. 33, 1174–1180 (2008)CrossRefGoogle Scholar
  8. 8.
    Gotsmann, B., Lantz, M.A.: Atomistic wear in a single asperity sliding contact. Phys. Rev. Lett. 101, 125501 (2008)CrossRefGoogle Scholar
  9. 9.
    Mulliah, D., Kenny, S.D., Mcgee, E., Smith, R., Richter, A., Wolf, B.: Atomistic modelling of ploughing friction in silver, iron and silicon. Nanotechnology 17, 1807–1818 (2006)CrossRefGoogle Scholar
  10. 10.
    Bowden, F.P., Tabor, D.: The friction and lubrication of solids I. Clarendon Press, Oxford (1950–1954)Google Scholar
  11. 11.
    Bucaille, J.L., Gauthier, C., Schirrer, R.: The influence of strain hardening of polymers on the piling-up phenomenon in scratch tests: experiments and numerical modelling. Wear 260, 803–814 (2006)CrossRefGoogle Scholar
  12. 12.
    Lafaye, S., Gauthier, C., Schirrer, R.: The ploughing friction: analytical model with elastic recovery for a conical tip with a blunted spherical extremity. Tribol. Lett. 21, 95–99 (2006)CrossRefGoogle Scholar
  13. 13.
    Kamminga, J.D., Janssen, G.C.A.M.: Experimental discrimination of plowing friction and shear friction. Tribol. Lett. 25, 149–152 (2006)CrossRefGoogle Scholar
  14. 14.
    Goddard, J., Wilman, H.: A theory of friction and wear during the abrasion of metals. Wear 5, 114–135 (1962)CrossRefGoogle Scholar
  15. 15.
    Gauthier, C., Lafaye, S., Schirrer, R.: Elastic recovery of a scratch in a polymeric surface: experiments and analysis. Tribol. Int. 34, 469–479 (2001)CrossRefGoogle Scholar
  16. 16.
    Vashishta, P., Kalia, R.K., Nakano, A., Rino, J.P.: Interaction potential for silicon carbide: a molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide. J. Appl. Phys. 2007, 103515 (2007)CrossRefGoogle Scholar
  17. 17.
    Finnis, M.W., Sinclair, J.E.: A Simple empirical N-body potential for transition metals. Philos. Mag. A. 50, 45–55 (1984)CrossRefGoogle Scholar
  18. 18.
    Mishra, M., Szlufarska, I.: Possibility of high-pressure transformation during nanoindentation of SiC. Acta Mater. 57, 6156–6165 (2009)CrossRefGoogle Scholar
  19. 19.
    Chen, H.P., Kalia, R.K., Nakano, A., Vashishta, P., Szlufarska, I.: Multimillion-atom nanoindentation simulation of crystalline silicon carbide: orientation dependence and anisotropic pileup. J. Appl. Phys. 102, 063514 (2007)CrossRefGoogle Scholar
  20. 20.
    Pei, Q.X., Lu, C., Lee, H.P., Zhang, Y.W.: Study of materials deformation in nanometric cutting by large-scale molecular dynamics simulations. Nano. Res. Lett. 4, 444–451 (2009)CrossRefGoogle Scholar
  21. 21.
    Cho, M.H., Kim, S.J., Lim, D.S., Jang, H.: Atomic scale stick-slip caused by dislocation nucleation and propagation during scratching of a Cu substrate with a nanoindenter: a molecular dynamics simulation. Wear 259, 1392–1399 (2005)CrossRefGoogle Scholar
  22. 22.
    Chang, R.C., Chen, F.Y., Sun, C.E.: Using nanoindentation and nanoscratch to determine thin film mechanical properties. Key Eng. Mater. 326, 357–360 (2006)CrossRefGoogle Scholar
  23. 23.
    Challen, J.M., Oxley, P.L.B.: An explanation of the different regimes of friction and wear using asperity deformation models. Wear 53, 229–243 (1979)CrossRefGoogle Scholar
  24. 24.
    Sundararajan, S., Bhushan, B.: Micro/nanotribological studies of polysilicon and SiC films for MEMS applications. Wear 217, 251–261 (1998)CrossRefGoogle Scholar
  25. 25.
    Gosvami, N., Filleter, T., Egberts, P., Bennewitz, R.: Microscopic friction studies on metal surfaces. Tribol. Lett. 39, 19–24 (2010)CrossRefGoogle Scholar
  26. 26.
    M’ndange-Pfupfu, A., Marks, L.D.: A dislocation-based analytical model for the nanoscale processes of shear and plowing friction. Tribol. Lett. 39, 163–167 (2010)CrossRefGoogle Scholar
  27. 27.
    Bhushan, B., Nosonovsky, M.: Comprehensive model for scale effects in friction due to adhesion and two- and three-body deformation (plowing). Acta Mater. 52, 2461–2474 (2004)CrossRefGoogle Scholar
  28. 28.
    Deshpande, V.S., Needleman, A., Vander Giessen, E.: Discrete dislocation plasticity analysis of static friction. Acta Mater. 52, 3135–3149 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Materials Science ProgramUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of Materials Science and EngineeringUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations