Tribology Letters

, Volume 45, Issue 2, pp 229–235 | Cite as

Dynamical Evolution of Wear Particles in Nanocontacts

  • K. Anantheshwara
  • A. J. Lockwood
  • Raja K. Mishra
  • B. J. Inkson
  • M. S. Bobji
Original Paper

Abstract

Nanoscale surface modification, by the interaction of sliding surfaces and mobile nanoparticles, is a critical parameter for controlling friction, wear and failure of surface structures. Here we demonstrate how nanoparticles form and interact in real-time at moving nanocontacts, with reciprocating wear tests imaged in situ at the nanoscale over >300 cycles in a transmission electron microscope. Between sliding surfaces, friction-formed nanoparticles are observed with rolling, sliding and spinning motions, dependant on localised contact conditions and particle geometry. Over periods of many scratch cycles, nanoparticles dynamically agglomerate into elongated clusters, and dissociate into smaller particulates. We also show that the onset of rolling motion of these particles accompanies a reduction in measured friction. Introduction of nanoparticles with optimum shape and property can thus be used to control friction and wear in microdevices.

Keywords

Friction Reciprocating wear Nanoparticles Tribofilm 

Supplementary material

Supplementary material 1 (MPG 3242 kb)

Supplementary material 2 (MPG 2446 kb)

Supplementary material 3 (MPG 5018 kb)

References

  1. 1.
    Williams, J.: Engineering Tribology. Oxford University press, Oxford (1994)Google Scholar
  2. 2.
    Samuels, L.E., Doyle, E.D., Turley, D.M.: Fundamentals of Friction and Wear of Materials, pp. 13–41. American Society for Metals, Pittsburgh (1981)Google Scholar
  3. 3.
    Williams, J.A., Le, H.R.: Tribology of MEMS. J. Phys. D 39, R201–R214 (2006)CrossRefGoogle Scholar
  4. 4.
    Bhushan, B.: Tribology on the macroscale to nanoscale of microelectromechanical system materials: a review. Proc. Int. Mech. Eng. 215, 1–18 (2001)CrossRefGoogle Scholar
  5. 5.
    Fan, L.S., Tai, Y., Muller, R.S.: Integrated movable micromechanical structures for sensors and actuators. IEEE Trans. Electron. Dev. 35, 724–730 (1988)CrossRefGoogle Scholar
  6. 6.
    Robbins, M.Q., Luan, B.Q.: The breakdown of continuum models for mechanical contacts. Nature 435, 929–932 (2005)CrossRefGoogle Scholar
  7. 7.
    Bobji, M.S., Biswas, S.K.: Deconvolution of hardness from the data obtained from nanoindentation of rough surfaces. J. Mater. Res. 14, 2259–2268 (1999)CrossRefGoogle Scholar
  8. 8.
    Baumberger, T., Caroli, C.: Solid friction from stick slip down to pinning and aging. Adv. Phys. 55, 279–348 (2006)CrossRefGoogle Scholar
  9. 9.
    Yang, C., Persson, B.J.N.: Molecular dynamics study of contact mechanics: contact area and interfacial separation from small to full contact. Phys. Rev. Lett. (2008) 100, 024303Google Scholar
  10. 10.
    Bhushan, B., Israelachvill, J.N., Landman, U.: Nanotribology: friction, wear and lubrication at the atomic scale. Nature 374, 607–616 (1995)CrossRefGoogle Scholar
  11. 11.
    Bhaskaran, H., Gotsmann, B., Sebastian, A., Drechsler, U., Lantz, M.A., Despont, M., Jaroenapibal, P., Carpick, R.W., Cheng, Y., Sridharan, K.: Ultralow nanoscale wear through atom by atom attrition in silicon containing diamond like carbon. Nat. Nanotechnol. 5, 181–185 (2010)CrossRefGoogle Scholar
  12. 12.
    Mo, Y., Turbner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457, 1116–1119 (2009)CrossRefGoogle Scholar
  13. 13.
    Fujisawa, S., Kizuka, T.: Lateral displacement of an AFM tip observed by in-situ TEM/AFM combined microscopy: The effect of the friction in AFM. Tribol. Lett. 15, 163–168 (2003)CrossRefGoogle Scholar
  14. 14.
    Wall, M.A., Dahmen, U.: An in situ nanoindentation specimen holder for a high voltage transmission electron microscope. Microsc. Res. Tech. 42, 248–254 (1998)CrossRefGoogle Scholar
  15. 15.
    Marks, L.D., Warren, O.L., Minor, A.M., Merkle, A.P.: Tribology in full view. MRS Bull. 33, 1168–1173 (2008)CrossRefGoogle Scholar
  16. 16.
    Kizuka, T.: Atomic visualization of deformation in gold. Phys. Rev. B 57, 158–163 (1998)CrossRefGoogle Scholar
  17. 17.
    Ribeiro, R., Shan, Z., Minor, A.M., Liang, H.: In situ observation of nano-abrasive wear. Wear 263, 1556–1559 (2007)CrossRefGoogle Scholar
  18. 18.
    Wang, J.J., Lockwood, A.J., Peng, Y., Xu, X., Bobji, M.S., Inkson, B.J.: The formation of carbon nanostructures by in situ TEM mechanical nanoscale fatigue and fracture of carbon films. Nanotechnology 20, 305703 (2009)CrossRefGoogle Scholar
  19. 19.
    Merkle, A.P., Marks, L.D.: Liquid like tribology of gold studied by in situ TEM. Wear 265, 1864–1869 (2008)CrossRefGoogle Scholar
  20. 20.
    Liao, Y., Eswaramoorthy, S.K., Marks, L.D.: Direct observation of tribological recrystallization. Philos. Mag. Lett. 90, 219–223 (2010)CrossRefGoogle Scholar
  21. 21.
    Lahouij, I., Dassenoy, F., Knoop, L., Martin, J.M., Vacher, B.: In situ TEM observation of the behavior of an individual fullerene like MoS2 nanoparticle in a dynamic contact. Tribol. Lett. 42, 133–140 (2011)CrossRefGoogle Scholar
  22. 22.
    Bobji, M.S., Ramanujan, C.S., Pethica, J.B., Inkson, B.J.: A miniaturized TEM nanoindenter for studying material deformation in situ. Meas. Sci. Technol. 17, 1–6 (2006)CrossRefGoogle Scholar
  23. 23.
    Lockwood, A.J., Wedekind, J., Gay, R.S., Bobji, M.S., Amavasai, B., Howarth, M., M¨obus, G., Inkson, B.J.: Advanced transmission microscope triboprobe with automated closed loop nanopositioning. Meas. Sci. Technol. 21, 075901 (2010)CrossRefGoogle Scholar
  24. 24.
    Lockwood, A.J., Anantheshwara, K., Bobji, M.S., Inkson, B.J.: Friction-formed liquid droplets. Nanotechnology 22, 105703 (2011)CrossRefGoogle Scholar
  25. 25.
    Lee, K., Hwang, Y., Cheong, S., Choi, Y., Kwon, L., Lee, J., Kim, S.H.: Understanding the role of nanoparticles in nano-oil lubrication. Tribol. Lett. 35, 127–131 (2009)CrossRefGoogle Scholar
  26. 26.
    Xue, Q., Liu, W., Zhang, Z.: Friction and wear properties of a surface modified TiO2 nanoparticle as an additive in liquid paraffin. Wear 213, 29–32 (1997)CrossRefGoogle Scholar
  27. 27.
    Sunquing, Q., Junxui, D., Guoxu, C.: Tribological properties of CeF nanoparticles as additives in lubricating oils. Wear 230, 35–39 (1999)CrossRefGoogle Scholar
  28. 28.
    Zhou, J., Wu, Z., Zhang, Z., Liu, W., Xue, W.: Tribological behavior and lubricating mechanism of Cu nanoparticles in oil. Tribol. Lett. 8, 213–218 (2000)CrossRefGoogle Scholar
  29. 29.
    Chang, L., Friedrich, K.: Enhancement effect of nanoparticles on the sliding wear of short fiber-reinforced polymer composites: a critical discussion of wear mechanisms. Tribol. Int. 43, 2355–2364 (2010)CrossRefGoogle Scholar
  30. 30.
    Rapoport, L., Bilik, Y., Feldman, Y., Homyonfer, M., Cohen, S.R., Tenne, R.: Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 387, 791–793 (1997)CrossRefGoogle Scholar
  31. 31.
    Kao, M., Lin, C.: Evaluating the role of spherical titanium oxide nanoparticles in reducing friction between two pieces of cast iron. J. Alloys Compd. 483, 456–459 (2009)CrossRefGoogle Scholar
  32. 32.
    Bobji, M.S., Pethica, J.B., Inkson, B.J.: Indentation mechanics of Cu-Be quantified by in situ transmission electron microscopy mechanical probe. J. Mater. Res. 20, 2726–2732 (2005)CrossRefGoogle Scholar
  33. 33.
    Anantheswasra, K., Bobji, M.S.: In situ transmission electron microscope study of single asperity sliding contacts. Tribol. Int. 43, 1099–1103 (2010)CrossRefGoogle Scholar
  34. 34.
    Hundal, M.S.: Response of a base excited system with coulomb and viscous friction. J. Sound Vib. 64, 371–378 (1979)CrossRefGoogle Scholar
  35. 35.
    Patton, S.T., Voevodin, A.A., Vaia, R.A., Pender, M., Diamanti, S.J., Phillips, B.: Nanoparticle liquids for surface modification and lubrication of MEMS switch contacts. J. MEMS 17, 741–746 (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • K. Anantheshwara
    • 1
  • A. J. Lockwood
    • 2
  • Raja K. Mishra
    • 3
  • B. J. Inkson
    • 2
  • M. S. Bobji
    • 1
  1. 1.Department of Mechanical EngineeringIndian Institute of ScienceBangaloreIndia
  2. 2.Department of Materials Science & EngineeringUniversity of SheffieldSheffieldUK
  3. 3.General Motors Research & Development CenterWarrenUSA

Personalised recommendations