Dynamical Evolution of Wear Particles in Nanocontacts


Nanoscale surface modification, by the interaction of sliding surfaces and mobile nanoparticles, is a critical parameter for controlling friction, wear and failure of surface structures. Here we demonstrate how nanoparticles form and interact in real-time at moving nanocontacts, with reciprocating wear tests imaged in situ at the nanoscale over >300 cycles in a transmission electron microscope. Between sliding surfaces, friction-formed nanoparticles are observed with rolling, sliding and spinning motions, dependant on localised contact conditions and particle geometry. Over periods of many scratch cycles, nanoparticles dynamically agglomerate into elongated clusters, and dissociate into smaller particulates. We also show that the onset of rolling motion of these particles accompanies a reduction in measured friction. Introduction of nanoparticles with optimum shape and property can thus be used to control friction and wear in microdevices.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Williams, J.: Engineering Tribology. Oxford University press, Oxford (1994)

  2. 2.

    Samuels, L.E., Doyle, E.D., Turley, D.M.: Fundamentals of Friction and Wear of Materials, pp. 13–41. American Society for Metals, Pittsburgh (1981)

  3. 3.

    Williams, J.A., Le, H.R.: Tribology of MEMS. J. Phys. D 39, R201–R214 (2006)

  4. 4.

    Bhushan, B.: Tribology on the macroscale to nanoscale of microelectromechanical system materials: a review. Proc. Int. Mech. Eng. 215, 1–18 (2001)

  5. 5.

    Fan, L.S., Tai, Y., Muller, R.S.: Integrated movable micromechanical structures for sensors and actuators. IEEE Trans. Electron. Dev. 35, 724–730 (1988)

  6. 6.

    Robbins, M.Q., Luan, B.Q.: The breakdown of continuum models for mechanical contacts. Nature 435, 929–932 (2005)

  7. 7.

    Bobji, M.S., Biswas, S.K.: Deconvolution of hardness from the data obtained from nanoindentation of rough surfaces. J. Mater. Res. 14, 2259–2268 (1999)

  8. 8.

    Baumberger, T., Caroli, C.: Solid friction from stick slip down to pinning and aging. Adv. Phys. 55, 279–348 (2006)

  9. 9.

    Yang, C., Persson, B.J.N.: Molecular dynamics study of contact mechanics: contact area and interfacial separation from small to full contact. Phys. Rev. Lett. (2008) 100, 024303

  10. 10.

    Bhushan, B., Israelachvill, J.N., Landman, U.: Nanotribology: friction, wear and lubrication at the atomic scale. Nature 374, 607–616 (1995)

  11. 11.

    Bhaskaran, H., Gotsmann, B., Sebastian, A., Drechsler, U., Lantz, M.A., Despont, M., Jaroenapibal, P., Carpick, R.W., Cheng, Y., Sridharan, K.: Ultralow nanoscale wear through atom by atom attrition in silicon containing diamond like carbon. Nat. Nanotechnol. 5, 181–185 (2010)

  12. 12.

    Mo, Y., Turbner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457, 1116–1119 (2009)

  13. 13.

    Fujisawa, S., Kizuka, T.: Lateral displacement of an AFM tip observed by in-situ TEM/AFM combined microscopy: The effect of the friction in AFM. Tribol. Lett. 15, 163–168 (2003)

  14. 14.

    Wall, M.A., Dahmen, U.: An in situ nanoindentation specimen holder for a high voltage transmission electron microscope. Microsc. Res. Tech. 42, 248–254 (1998)

  15. 15.

    Marks, L.D., Warren, O.L., Minor, A.M., Merkle, A.P.: Tribology in full view. MRS Bull. 33, 1168–1173 (2008)

  16. 16.

    Kizuka, T.: Atomic visualization of deformation in gold. Phys. Rev. B 57, 158–163 (1998)

  17. 17.

    Ribeiro, R., Shan, Z., Minor, A.M., Liang, H.: In situ observation of nano-abrasive wear. Wear 263, 1556–1559 (2007)

  18. 18.

    Wang, J.J., Lockwood, A.J., Peng, Y., Xu, X., Bobji, M.S., Inkson, B.J.: The formation of carbon nanostructures by in situ TEM mechanical nanoscale fatigue and fracture of carbon films. Nanotechnology 20, 305703 (2009)

  19. 19.

    Merkle, A.P., Marks, L.D.: Liquid like tribology of gold studied by in situ TEM. Wear 265, 1864–1869 (2008)

  20. 20.

    Liao, Y., Eswaramoorthy, S.K., Marks, L.D.: Direct observation of tribological recrystallization. Philos. Mag. Lett. 90, 219–223 (2010)

  21. 21.

    Lahouij, I., Dassenoy, F., Knoop, L., Martin, J.M., Vacher, B.: In situ TEM observation of the behavior of an individual fullerene like MoS2 nanoparticle in a dynamic contact. Tribol. Lett. 42, 133–140 (2011)

  22. 22.

    Bobji, M.S., Ramanujan, C.S., Pethica, J.B., Inkson, B.J.: A miniaturized TEM nanoindenter for studying material deformation in situ. Meas. Sci. Technol. 17, 1–6 (2006)

  23. 23.

    Lockwood, A.J., Wedekind, J., Gay, R.S., Bobji, M.S., Amavasai, B., Howarth, M., M¨obus, G., Inkson, B.J.: Advanced transmission microscope triboprobe with automated closed loop nanopositioning. Meas. Sci. Technol. 21, 075901 (2010)

  24. 24.

    Lockwood, A.J., Anantheshwara, K., Bobji, M.S., Inkson, B.J.: Friction-formed liquid droplets. Nanotechnology 22, 105703 (2011)

  25. 25.

    Lee, K., Hwang, Y., Cheong, S., Choi, Y., Kwon, L., Lee, J., Kim, S.H.: Understanding the role of nanoparticles in nano-oil lubrication. Tribol. Lett. 35, 127–131 (2009)

  26. 26.

    Xue, Q., Liu, W., Zhang, Z.: Friction and wear properties of a surface modified TiO2 nanoparticle as an additive in liquid paraffin. Wear 213, 29–32 (1997)

  27. 27.

    Sunquing, Q., Junxui, D., Guoxu, C.: Tribological properties of CeF nanoparticles as additives in lubricating oils. Wear 230, 35–39 (1999)

  28. 28.

    Zhou, J., Wu, Z., Zhang, Z., Liu, W., Xue, W.: Tribological behavior and lubricating mechanism of Cu nanoparticles in oil. Tribol. Lett. 8, 213–218 (2000)

  29. 29.

    Chang, L., Friedrich, K.: Enhancement effect of nanoparticles on the sliding wear of short fiber-reinforced polymer composites: a critical discussion of wear mechanisms. Tribol. Int. 43, 2355–2364 (2010)

  30. 30.

    Rapoport, L., Bilik, Y., Feldman, Y., Homyonfer, M., Cohen, S.R., Tenne, R.: Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 387, 791–793 (1997)

  31. 31.

    Kao, M., Lin, C.: Evaluating the role of spherical titanium oxide nanoparticles in reducing friction between two pieces of cast iron. J. Alloys Compd. 483, 456–459 (2009)

  32. 32.

    Bobji, M.S., Pethica, J.B., Inkson, B.J.: Indentation mechanics of Cu-Be quantified by in situ transmission electron microscopy mechanical probe. J. Mater. Res. 20, 2726–2732 (2005)

  33. 33.

    Anantheswasra, K., Bobji, M.S.: In situ transmission electron microscope study of single asperity sliding contacts. Tribol. Int. 43, 1099–1103 (2010)

  34. 34.

    Hundal, M.S.: Response of a base excited system with coulomb and viscous friction. J. Sound Vib. 64, 371–378 (1979)

  35. 35.

    Patton, S.T., Voevodin, A.A., Vaia, R.A., Pender, M., Diamanti, S.J., Phillips, B.: Nanoparticle liquids for surface modification and lubrication of MEMS switch contacts. J. MEMS 17, 741–746 (2008)

Download references


The authors would like to acknowledge British Council/ Department of Science and Technology UKIERI UK-India exchange programme SA07-053 (BJI and MSB), and the EPSRC, UK for Basic Technology grants GR/S85689/01 and EP/G036748/1 (BJI).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Correspondence to M. S. Bobji.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MPG 3242 kb)

Supplementary material 2 (MPG 2446 kb)

Supplementary material 3 (MPG 5018 kb)

Supplementary material 1 (MPG 3242 kb)

Supplementary material 2 (MPG 2446 kb)

Supplementary material 3 (MPG 5018 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Anantheshwara, K., Lockwood, A.J., Mishra, R.K. et al. Dynamical Evolution of Wear Particles in Nanocontacts. Tribol Lett 45, 229–235 (2012).

Download citation


  • Friction
  • Reciprocating wear
  • Nanoparticles
  • Tribofilm