Tribology Letters

, Volume 45, Issue 1, pp 219–224 | Cite as

Nanoscale Mapping of Frictional Anisotropy

  • Marcello Campione
  • Silvia Trabattoni
  • Massimo Moret
Methods Paper


Friction hodographs contain all the information related to the intensity and symmetry of the friction phenomenon. We show how an atomic force microscope can be used to collect friction hodographs at the nanoscale and how to carry out data interpretation to unravel the friction–surface structure relationship. As a model system, we analyzed the basal plane of orthorhombic β-alanine single crystals, and interpreted the data in terms of a constitutive model of orthotropic friction with slip direction-dependent friction coefficients.


Nanotribology AFM Anisotropic friction Crystalline surfaces 



Fondazione Cariplo is acknowledged for partial financial support


  1. 1.
    Zmitrowicz, A.: Mathematical descriptions of anisotropic friction. Int. J. Solid Struct. 25, 837–862 (1989)CrossRefGoogle Scholar
  2. 2.
    Zmitrowicz, A.: A constitutive modelling of centrosymmetric and non-centrosymmetric anisotropic friction. Int. J. Solid Struct. 29, 3025–3043 (1992)CrossRefGoogle Scholar
  3. 3.
    Zmitrowicz, A.: Illustrative examples of centrosymmetric and non-centrosymmetric anisotropic friction. Int. J. Solid Struct. 29, 3045–3059 (1992)CrossRefGoogle Scholar
  4. 4.
    Park, J.Y., Ogletree, D.F., Salmeron, M., Ribeiro, R.A., Canfield, P.C., Jenks, C.J., Thiel, P.A.: High frictional anisotropy of periodic and aperiodic directions on a quasicrystal surface. Science 309, 1354–1356 (2005)CrossRefGoogle Scholar
  5. 5.
    Meyer, G., Amer, N.M.: Simultaneous measurement of lateral and normal forces with an optical-beam-deflection atomic force microscope. Appl. Phys. Lett. 57, 2089–2091 (1990)CrossRefGoogle Scholar
  6. 6.
    Radmacher, M., Tillmann, R.M., Fritz, M., Gaub, H.E.: From molecules to cells: imaging soft samples with the atomic force microscope. Science 257, 1900–1905 (1992)CrossRefGoogle Scholar
  7. 7.
    Kalihari, V., Tadmor, E.B., Haugstad, G., Frisbie, C.D.: Grain orientation mapping of polycrystalline organic semiconductor films by transverse shear microscopy. Adv. Mater. 20, 4033–4039 (2008)CrossRefGoogle Scholar
  8. 8.
    Campione, M., Fumagalli, E.: Friction anisotropy of the surface of organic crystals and its impact on scanning force microscopy. Phys. Rev. Lett. 105, 166103 (2010)CrossRefGoogle Scholar
  9. 9.
    Fleming, A.J.: Quantitative scanning probe microscope topographies by charge linearization of the vertical actuator. Rev. Sci. Instrum. 81, 103701 (2010)CrossRefGoogle Scholar
  10. 10.
    Romano, E., Trabattoni, S., Campione, M., Merati, E., Sassella, A., Narducci, D.: Combined use of AFM and FTIR in the analysis of the hydrogen termination of Si(100) surfaces. In: Méndez-Vilas, A., Díaz, E.J. (eds) Microscopy: science, technology, applications and education, vol. 3., pp. 1984–1992. Formatex Research Center, Badajoz (2010)Google Scholar
  11. 11.
    Papavinasam, E., Natarajan, S., Shivaprakash, N.: Reinvestigation of the crystal structure of β-alanine. Int. J. Pept. Protein Res. 28, 525–528 (1986)CrossRefGoogle Scholar
  12. 12.
    Sul, O., Jang, S., Yang, E.-H.: Step-edge calibration of torsional sensitivity for lateral force microscopy. Meas. Sci. Technol. 20, 115104 (2009)CrossRefGoogle Scholar
  13. 13.
    Dienwiebel, M., Verhoeven, G.S., Pradeep, N., Frenken, J.W.M.: Superlubricity of graphite. Phys. Rev. Lett. 92, 126101 (2004)CrossRefGoogle Scholar
  14. 14.
    Sheehan, P.E., Lieber, C.M.: Nanotribology and nanofabrication of MoO3 structures by atomic force microscopy. Science 272, 1158–1161 (1996)CrossRefGoogle Scholar
  15. 15.
    Carpick, R.W., Sasaki, D.Y., Burns, A.R.: Large friction anisotropy of a polydiacetylene monolayer. Tribol. Lett. 7, 79–85 (1999)CrossRefGoogle Scholar
  16. 16.
    Fessler, G., Zimmermann, I., Glatzel, T., Gnecco, E., Steiner, P., Roth, R., Keene, T.D., Liu, S.-X., Decurtins, S., Meyer, E.: Orientation dependent molecular friction on organic layer compound crystals. Appl. Phys. Lett. 98, 083119 (2011)CrossRefGoogle Scholar
  17. 17.
    Liley, M., Gourdon, D., Stamou, D., Meseth, U., Fischer, T.M., Lautz, C., Stahlberg, H., Vogel, H., Burnham, N.A., Duschl, C.: Friction anisotropy and asymmetry of a compliant monolayer induced by a small molecular tilt. Science 280, 273–275 (2011)CrossRefGoogle Scholar
  18. 18.
    Hisada, K., Knobler, C.M.: Microscopic friction anisotropy and asymmetry related to the molecular tilt azimuth in a monolayer of glycerol ester. Coll. Surf. A 198–200, 21–30 (2002)CrossRefGoogle Scholar
  19. 19.
    Bluhm, H., Schwarz, U.D., Meyer, K.-P., Wiesendanger, R.: Anisotropy of sliding friction on the triglycine sulfate (010) surface. Appl. Phys. A 61, 525–533 (1995)CrossRefGoogle Scholar
  20. 20.
    Overney, R.M., Takano, H., Fujihira, M.: Anisotropy in friction and molecular stick-slip motion. Phys. Rev. Lett. 72, 3546–3549 (1994)CrossRefGoogle Scholar
  21. 21.
    Choi, J.S., Kim, J.-S., Byun, I.-S., Lee, D.H., Lee, M.J., Park, B.H., Lee, C., Yoon, D., Cheong, H., Lee, K.H., Son, Y.-W., Park, J.Y., Salmeron, M.: Friction anisotropy-driven domain imaging on exfoliated monolayer graphene. Science 333, 607–610 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Marcello Campione
    • 1
  • Silvia Trabattoni
    • 2
  • Massimo Moret
    • 2
  1. 1.Department of Geological Sciences and GeotechnologiesUniversità degli Studi di Milano BicoccaMilanItaly
  2. 2.Department of Materials ScienceUniversità degli Studi di Milano BicoccaMilanItaly

Personalised recommendations