Advertisement

Tribology Letters

, Volume 45, Issue 1, pp 185–194 | Cite as

Optical In Situ Micro Tribometer for Analysis of Real Contact Area for Contact Mechanics, Adhesion, and Sliding Experiments

  • Brandon A. Krick
  • Jennifer R. Vail
  • Bo N. J. Persson
  • W. Gregory Sawyer
Original Paper

Abstract

An instrument has been developed that allows in situ optical analysis and tribological measurements for contacts between solid bodies; an interferometric optical analysis can be used to measure and observe contact size, contact geometry, near contact topography, tribofilm formation, tribofilm motion, tribofilm thickness, wear debris formation, and wear debris morphology. The optical arrangement is in such a way that a 0th order interference fringe highlights the real contact area of contact, while near contact regions are height-mapped with higher order Newton’s rings interference fringes. Images synchronized with force and position measurements allow for the potential to test and validate models for contact mechanics, adhesion, and sliding. The contact and friction measurement between a rough rubber sphere and a polished glass counterface were studied over a range of loads from 1 to 50 mN.

Keywords

Contact area In situ Optical Tribometer Tribology Contact mechanics Rubber Friction 

Notes

Acknowledgments

The authors gratefully acknowledge Bertrand Bellaton at CSM instruments for collaboration and development of a low profile optical path for the objective, camera, and light source. We would also like to thank David Hahn, Dan Dickrell, Pete Dillinger, and Nicolas Argibay at the University of Florida and Nestor Rodriguez and Paolo Mangiagalli at Becton–Dickinson for useful discussion and collaboration.

References

  1. 1.
    Sawyer, W.G., Wahl, K.J.: Accessing inaccessible interfaces: in situ approaches to materials tribology. MRS Bull. 33, 1145–1148 (2008)CrossRefGoogle Scholar
  2. 2.
    Wahl, K.J., Sawyer, W.G.: Observing interfacial sliding processes in solid–solid contacts. MRS Bull. 33, 1159–1167 (2008)CrossRefGoogle Scholar
  3. 3.
    Scharf, T.W., Singer, I.L.: Monitoring transfer films and friction instabilities with in situ Raman tribometry. Tribol. Lett. 14, 3–8 (2003)CrossRefGoogle Scholar
  4. 4.
    Rebelo de Figueiredo, M., Muratore, C., Franz, R., Chromik, R., Wahl, K., Voevodin, A., O’Sullivan, M., Lechthaler, M., Mitterer, C.: In situ studies of tic1 − xnx hard coating tribology. Tribol. Lett. 40, 365–373 (2010)CrossRefGoogle Scholar
  5. 5.
    Murarash, B., Varenberg, M.: Tribometer for in situ scanning electron microscopy of microstructured contacts. Tribol. Lett. 41, 319–323 (2011)CrossRefGoogle Scholar
  6. 6.
    Merkle, A.P., Marks, L.D.: Liquid-like tribology of gold studied by in situ tem. Wear 265, 1864–1869 (2008)CrossRefGoogle Scholar
  7. 7.
    Dyson, J., Hirst, W.: The true contact area between solids. Proc. Phys. Soc. Lond. Sect. B 67, 309–312 (1954)CrossRefGoogle Scholar
  8. 8.
    Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids. Oxford University Press, Oxford (1954)Google Scholar
  9. 9.
    Holm, R.: Electric Contacts Handbook. Springer-Verlag, Berlin (1958)Google Scholar
  10. 10.
    Mccutchen, C.W.: Optical systems for observing surface topography by frustrated total internal reflection and interference. Rev. Sci. Instrum. 35, 1340–1345 (1964)Google Scholar
  11. 11.
    O’Callaghan, P.W., Probert, S.D.: Prediction and measurement of true areas of contact between solids. Wear 120, 29–49 (1987)CrossRefGoogle Scholar
  12. 12.
    Chromik, R.R., Baker, C.C., Voevodin, A.A., Wahl, K.J.: In situ tribometry of solid lubricant nanocomposite coatings. Wear 262, 1239–1252 (2007)CrossRefGoogle Scholar
  13. 13.
    Wahl, K.J., Chromik, R.R., Lee, G.Y.: Quantitative in situ measurement of transfer film thickness by a Newton’s rings method. Wear 264, 731–736 (2008)CrossRefGoogle Scholar
  14. 14.
    Federle, W., Barnes, W.J.P., Baumgartner, W., Drechsler, P., Smith, J.M.: Wet but not slippery: boundary friction in tree frog adhesive toe pads. J. R. Soc. Interface 3, 689–697 (2006)CrossRefGoogle Scholar
  15. 15.
    Federle, W., Endlein, T.: Locomotion and adhesion: dynamic control of adhesive surface contact in ants. Arthropod Struct. Dev. 33, 67–75 (2004)CrossRefGoogle Scholar
  16. 16.
    Federle, W., Riehle, M., Curtis, A.S.G., Full, R.J.: An integrative study of insect adhesion: mechanics and wet adhesion of pretarsal pads in ants. Integr. Comp. Biol. 42, 1100–1106 (2002)CrossRefGoogle Scholar
  17. 17.
    Bowden, F.P., Tabor, D.: The area of contact between stationary and between moving surfaces. Proc. R. Soc. Lond. Ser. A 169, 391–413 (1939)CrossRefGoogle Scholar
  18. 18.
    Archard, J.F.: Elastic deformation and the laws of friction. Proc. R. Soc. Lond. Ser. A 243, 190–205 (1957)CrossRefGoogle Scholar
  19. 19.
    Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. Ser. A 295, 300–319 (1966)CrossRefGoogle Scholar
  20. 20.
    Whitehouse, D.J., Archard, J.F.: The properties of random surfaces of significance in their contact. Proc. R. Soc. Lond. Ser. A 316, 97–121 (1970)CrossRefGoogle Scholar
  21. 21.
    Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. Ser. A 324, 301–313 (1971)CrossRefGoogle Scholar
  22. 22.
    Kendall, K.J.: Adhesion and surface energy of elastic solids. J. Phys. D 4, 1186–1195 (1971)CrossRefGoogle Scholar
  23. 23.
    Derjaguin, B.V., Muller, V.M., Toporov, Y.P.: Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53, 314–326 (1975)CrossRefGoogle Scholar
  24. 24.
    Tabor, D.: Surface forces and surface interactions. J. Colloid Interface Sci. 58, 2–13 (1977)CrossRefGoogle Scholar
  25. 25.
    Maugis, D.: Adhesion of spheres: The jkr-dmt transition using a dugdale model. J. Colloid Interface Sci. 150, 243–269 (1992)CrossRefGoogle Scholar
  26. 26.
    Greenwood, J.A.: Adhesion of elastic spheres. Proc. Math. Phys. Eng. Sci. 453, 1277–1297 (1997)CrossRefGoogle Scholar
  27. 27.
    Johnson, K.L.: Mechanics of adhesion. Tribol. Int. 31, 413–418 (1998)CrossRefGoogle Scholar
  28. 28.
    Persson, B.N.J.: Theory of rubber friction and contact mechanics. J. Chem. Phys. 115, 3840–3861 (2001)CrossRefGoogle Scholar
  29. 29.
    Persson, B.N.J.: Contact mechanics for randomly rough surfaces. Surf. Sci. Rep. 61, 201–227 (2006)CrossRefGoogle Scholar
  30. 30.
    Varenberg, M., Peressadko, A., Gorb, S., Arzt, E., Mrotzek, S.: Advanced testing of adhesion and friction with a microtribometer. Rev. Sci. Instrum. 77, 066105 (2006)Google Scholar
  31. 31.
    Persson, B.N.J., Albohr, O., Heinrich, G., Ueba, H.: Crack propagation in rubber-like materials. J. Phys. Condens. Matter 17, R1071–R1142 (2005)CrossRefGoogle Scholar
  32. 32.
    Persson, B.N.J., Brener, E.A.: Crack propagation in viscoelastic solids. Phys. Rev. E 71, 036123 (2005)Google Scholar
  33. 33.
    Vorvolakos, K., Chaudhury, M.K.: The effects of molecular weight and temperature on the kinetic friction of silicone rubbers. Langmuir 19, 6778–6787 (2003)CrossRefGoogle Scholar
  34. 34.
    Persson, B.N.J.: Adhesion between an elastic body and a randomly rough hard surface. Eur. Phys. J. E 8, 385–401 (2002)Google Scholar
  35. 35.
    Barquins, M., Roberts, A.D.: Rubber-friction variation with rate and temperature—some new observations. J. Phys. D 19, 547–563 (1986)CrossRefGoogle Scholar
  36. 36.
    Chateauminois, A., Danh, T.N., Paolino, P., Audry, M.C., Fretigny, C., Le Chenadec, Y., Portigliatti, M., Barthel, E.: Surface pressure and shear stress fields within a frictional contact on rubber. J. Adhes. 87, 235–250 (2011)CrossRefGoogle Scholar
  37. 37.
    Wu-Bavouzet, F., Clain-Burckbuchler, J., Buguin, A., De Gennes, P.G., Brochard-Wyart, F.: Stick-slip: wet versus dry. J. Adhes. 83, 761–784 (2007)CrossRefGoogle Scholar
  38. 38.
    Savkoor, A.R., Briggs, G.A.D.: Effect of tangential force on contact of elastic solids in adhesion. Proc. R. Soc. Lond. Ser. A 356, 103–114 (1977)CrossRefGoogle Scholar
  39. 39.
    Persson, B.N.J., Sivebaek, I.M., Samoilov, V.N., Zhao, K., Volokitin, A.I., Zhang, Z.: On the origin of Amonton’s friction law. J. Phys. Condens. Matter 20, 395006 (2008)Google Scholar
  40. 40.
    Carbone, G., Mangialardi, L.: Adhesion and friction of an elastic half-space in contact with a slightly wavy rigid surface. J. Mech. Phys. Solids 52, 1267–1287 (2004)CrossRefGoogle Scholar
  41. 41.
    Persson, B.N.J., Volokitin, A.I.: Rubber friction on smooth surfaces. Eur. Phys. J. E 21, 69–80 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Brandon A. Krick
    • 1
  • Jennifer R. Vail
    • 1
  • Bo N. J. Persson
    • 1
    • 2
  • W. Gregory Sawyer
    • 1
  1. 1.Department of Mechanical and Aerospace EngineeringUniversity of FloridaGainesvilleUSA
  2. 2.IFF, FZ-JülichJülichGermany

Personalised recommendations