Tribology Letters

, 44:355 | Cite as

Formation and Oxidation of Linear Carbon Chains and Their Role in the Wear of Carbon Materials

  • Gianpietro Moras
  • Lars Pastewka
  • Peter Gumbsch
  • Michael Moseler
Original Paper


The atomic-scale processes taking place during the sliding of diamond and diamond-like carbon surfaces are investigated using classical molecular dynamics simulations. During the initial sliding stage, diamond surfaces undergo an amorphization process, while an sp 3 to sp 2 conversion takes place in tetrahedral amorphous carbon (ta-C) and amorphous hydrocarbon (a-C:H) surface layers. Upon separation of the sliding samples, the interface fails. A rather smooth failure occurs for a-C:H, where the hydrogen atoms present in the bulk passivate the chemically active carbon dangling bonds. Conversely, sp-hybridized carbon chains are observed to form on diamond and ta-C surfaces. These carbynoid structures are known to undergo a fast degradation process when in contact with oxygen. Using quantum-accurate density functional theory simulations, we present a possible mechanism for the oxygen-induced degradation of the carbon chains, leading to oxidative wear of the sp phase on diamond and ta-C surfaces upon exposure to air. Oxygen molecules chemisorb on C–C bonds of the chains, triggering the cleavage of the chains through concerted O–O and C–C bond-breaking reactions. A similar reaction caused by adsorption of water molecules on the carbon chains is ruled out on energetic grounds. Further O2 adsorption causes the progressive shortening of the resulting, O-terminated, chain fragments through the same O–O and C–C bond breaking mechanism accompanied by the formation of CO2 molecules.


Nanotribology Dynamic modelling Carbon Diamond Polishing Wear mechanisms Oxidative wear 



We are grateful to Michael Walter and Johann Schnagl for helpful discussions. We acknowledge financial support from the German Federal Ministry of Education and Research (BMBF grant 03X2512G), from the German Federal Ministry of Economics and Technology (BMWi grant 0327499A), and from the European Commission (Marie-Curie International Outgoing Fellowship for L.P.). The simulations were carried out on computer facilities at Fraunhofer IWM and JSC Jülich.


  1. 1.
    Robbins, M.O., Müser, M.H.: Computer simulations of friction, lubrication, and wear. In Bhushan B. (ed.) Modern Tribology Handbook, pp. 717–765. CRC Press, Boca Raton (2001)Google Scholar
  2. 2.
    Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids, 2nd edn. Oxford University Press, Oxford (1950)Google Scholar
  3. 3.
    Meng, H., Ludema, K.: Wear models and predictive equations: their form and content. Wear 181–183, 443–457 (1995)CrossRefGoogle Scholar
  4. 4.
    Sawyer, W.G., Wahl, K.J.: Accessing inaccessible interfaces: in situ approaches to materials tribology. MRS Bull. 33, 1145–1150 (2008)CrossRefGoogle Scholar
  5. 5.
    Dietzel, D., Ritter, C., Mönninghoff, T., Fuchs, H., Schirmeisen, A., Schwarz, U.D.: Frictional duality observed during nanoparticle sliding. Phys. Rev. Lett. 101, 125505 (2008)CrossRefGoogle Scholar
  6. 6.
    Dienwiebel, M., Verhoeven, G.S., Pradeep, N., Frenken, J.W.M., Heimberg, J.A., Zandbergen, H.W.: Superlubricity of graphite. Phys. Rev. Lett. 92, 126101 (2004)CrossRefGoogle Scholar
  7. 7.
    Bhaskaran, H., Gotsmann, B., Sebastian, A., Drechsler, U., Lantz, M.A., Despont, M., Jaroenapibal, P., Carpick, R.W., Chen, Y., Sridharan, K.: Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon. Nat. Nanotechnol. 5, 181 (2010)CrossRefGoogle Scholar
  8. 8.
    Gotsmann, B., Lantz, M.A.: Atomistic wear in a single asperity sliding contact. Phys. Rev. Lett. 101, 125501 (2008)CrossRefGoogle Scholar
  9. 9.
    Archard, J.F., Hirst, W.: The wear of metals under unlubricated conditions. Proc. R. Soc. Lond. A 236, 397–410 (1956)CrossRefGoogle Scholar
  10. 10.
    Quinn, T.F.J., Sullivan, J.L., Rowson, D.M.: Origins and development of oxidational wear at low ambient temperatures. Wear 94, 175–191 (1984)CrossRefGoogle Scholar
  11. 11.
    Morita, T., Banshoya, K., Tsutsumoto, T., Murase, Y.: Corrosive-wear characteristics of diamond-coated cemented carbide tools. J. Wood Sci. 45, 463–469 (1999)CrossRefGoogle Scholar
  12. 12.
    Chang, H.W., Rusnak, R.M.: Contribution of oxidation to the wear of carbon–carbon composites. Carbon 16, 309–312 (1978)CrossRefGoogle Scholar
  13. 13.
    Gouider, M., Berthier, Y., Jacquemard, P., Rousseau, B., Bonnamy, S., Estrade-Szwarckopf, H.: Mass spectrometry during C/C composite friction: carbon oxidation associated with high friction coefficient and high wear rate. Wear 256, 1082–1087 (2004)CrossRefGoogle Scholar
  14. 14.
    Kasem, H., Bonnamy, S., Rousseau, B., Estrade-Szwarckopf, H., Berthier, Y., Jacquemard, P.: Interdependence between wear process, size of detached particles and CO2 production during carbon/carbon composite friction. Wear 263, 1220–1229 (2007)CrossRefGoogle Scholar
  15. 15.
    McKee, D.W., Savage, R.H.: Chemical factors in carbon brush wear. Wear 22, 193–214 (1972)CrossRefGoogle Scholar
  16. 16.
    Pastewka, L., Moser, S., Gumbsch, P., Moseler, M.: Anisotropic mechanical amorphization drives wear in diamond. Nat. Mater. 10, 34–38 (2011)CrossRefGoogle Scholar
  17. 17.
    Kim, S.: Synthesis and structural analysis of one-dimensional sp-hybridized carbon chain molecules. Angew. Chem. Int. Ed. 48, 7740–7743 (2009)CrossRefGoogle Scholar
  18. 18.
    Whittaker, A.G.: Carbyne forms of carbon: evidence for their existence. Science 229, 485–486 (1985)CrossRefGoogle Scholar
  19. 19.
    Casari, C., Li Bassi, A., Ravagnan, L., Siviero, F., Lenardi, C., Piseri, P., Bongiorno, G., Bottani, C.E., Milani, P.: Chemical and thermal stability of carbyne-like structures in cluster-assembled carbon films. Phys. Rev. B 69, 075422 (2004)CrossRefGoogle Scholar
  20. 20.
    Casari, C., Libassi, A., Ravagnan, L., Siviero, F., Lenardi, C., Barborini, E., Piseri, P., Milani, P., Bottani, C.: Gas exposure and thermal stability of linear carbon chains in nanostructured carbon films investigated by in situ Raman spectroscopy. Carbon 42, 1103–1106 (2004)CrossRefGoogle Scholar
  21. 21.
    Hitchiner, M.P., Wilks, E.M., Wilks, J.: The polishing of diamond and diamond composite materials. Wear 94, 103–120 (1984)CrossRefGoogle Scholar
  22. 22.
    Pastewka, L., Moser, S., Moseler, M.: Atomistic insights into the running-in, lubrication, and failure of hydrogenated diamond-like carbon coatings. Tribol. Lett. 39, 49–61 (2010)CrossRefGoogle Scholar
  23. 23.
    Pastewka, L., Moser, S., Moseler, M., Blug, B., Meier, S., Hollstein, T., Gumbsch, P.: The running-in of amorphous hydrocarbon tribocoatings: a comparison between experiment and molecular dynamics simulations. Int. J. Mater. Res. 99, 1136–1143 (2008)Google Scholar
  24. 24.
    Peters, E.A.J.F.: Elimination of time step effects in DPD. Europhys. Lett. 66, 311–317 (2004)CrossRefGoogle Scholar
  25. 25.
    Hird, J.R., Field, J.E.: Diamond polishing. Proc. R. Soc. A Math. Phys. 460, 3547–3568 (2004)CrossRefGoogle Scholar
  26. 26.
    Pastewka, L., Pou, P., Prez, R., Gumbsch, P., Moseler, M.: Describing bond-breaking processes by reactive potentials: importance of an environment-dependent interaction range. Phys. Rev. B 78, 78–81 (2008)CrossRefGoogle Scholar
  27. 27.
    Colombi Ciacchi, L., Payne, M.C.: First-principles molecular-dynamics study of native oxide growth on Si(001). Phys. Rev. Lett. 95, 196101 (2005)CrossRefGoogle Scholar
  28. 28.
    Carbogno, C., Behler, J., Gross, A., Reuter, K.: Fingerprints for spin-selection rules in the interaction dynamics of O2 at Al(111). Phys. Rev. Lett. 101, 096104 (2008)CrossRefGoogle Scholar
  29. 29.
    Mortensen, J.J., Hansen, L.B., Jacobsen, K.W.: A real-space grid implementation of the Projector Augmented Wave method. Phys. Rev. B 71, 035109 (2005)CrossRefGoogle Scholar
  30. 30.
    Enkovaara, J., Rostgaard, C., Mortensen, J. J., Chen, J., Dulak, M., Ferrighi, L., Gavnholt, J., Glinsvad, C., Haikola, V., Hansen, H.A., Kristoffersen, H.H., Kuisma, M., Larsen, A.H., Lehtovaara, L., Ljungberg, M., Lopez-Acevedo, O., Moses, P.G., Ojanen, J., Olsen, T., Petzold, V., Romero, N.A., Stausholm-Moller, J., Strange, M., Tritsaris, G.A., Vanin, M., Walter, M., Hammer, B., Häkkinen, H., Madsen, G.K.H., Nieminen, R.M., Norskov, J.K., Puska, M., Rantala, T.T., Schiotz, J., Thygesen, K.S., Jacobsen, K.W.: Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J. Phys. Condens. Matter 22, 253202 (2010)CrossRefGoogle Scholar
  31. 31.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)CrossRefGoogle Scholar
  32. 32.
    Bitzek, E., Koskinen, P., Gähler, F., Moseler, M., Gumbsch, P.: Structural relaxation made simple. Phys. Rev. Lett. 97, 170201 (2006)CrossRefGoogle Scholar
  33. 33.
    Tang, W., Sanville, E., Henkelman, G.: A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 21, 084204 (2009)CrossRefGoogle Scholar
  34. 34.
    Henkelman, G., Jónsson, H.: Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978 (2000)CrossRefGoogle Scholar
  35. 35.
    Landman, U., Luedtke, W.D., Burnham, N.A., Colton, R.J.: Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fracture. Science 248, 454–461 (1990)CrossRefGoogle Scholar
  36. 36.
    Ravagnan, L., Siviero, F., Lenardi, C., Piseri, P., Barborini, E., Milani, P., Casari, C.S., Li Bassi, A., Bottani, C.E.: Cluster-beam deposition and in situ characterization of carbyne-rich carbon films. Phys. Rev. Lett. 89, 285506 (2002)CrossRefGoogle Scholar
  37. 37.
    Sowa, M.B., Anderson, S.L.: Oxidation of small carbon cluster ions by O2: effects of structure on the reaction mechanism. J. Chem. Phys. 97, 9164 (1992)CrossRefGoogle Scholar
  38. 38.
    Gu, X., Kaiser, R.I., Mebel, A.M.: Chemistry of energetically activated cumulenes—from allene (H2CCCH2) to hexapentaene (H2CCCCCCH2). ChemPhysChem 9, 350–369 (2008)CrossRefGoogle Scholar
  39. 39.
    Ravagnan, L., Manini, N., Cinquanta, E., Onida, G., Sangalli, D., Motta, C., Devetta, M., Bordoni, A., Piseri, P., Milani, P.: Effect of axial torsion on sp carbon atomic wires. Phys. Rev. Lett. 102, 245502 (2009)CrossRefGoogle Scholar
  40. 40.
    Heimann, R., Kleiman, J.: A unified structural approach to linear carbon polytypes. Nature 306, 164 (1983)CrossRefGoogle Scholar
  41. 41.
    Moras, G., Pastewka, L., Walter, M., Schnagl, J., Gumbsch, P., Moseler, M.: Progressive shortening of sp-hybridized carbon chains through oxygen-induced cleavage. Submitted (2011)Google Scholar
  42. 42.
    Zakharchenko, K.V., Fasolino, A., Los, J.H., Katsnelson, M.I.: Melting of graphene: from two to one dimension. J. Phys. Condens. Matter 23, 202202 (2011)CrossRefGoogle Scholar
  43. 43.
    Kim, S.G., Tománek, D.: Melting the fullerenes: a molecular dynamics study. Phys. Rev. Lett. 72, 2418–2421 (1994)CrossRefGoogle Scholar
  44. 44.
    Ohnishi, H., Kondo, Y., Takayanagi, K.: Quantized conductance through individual rows of suspended gold atoms. Nature 395, 780–783 (1998)CrossRefGoogle Scholar
  45. 45.
    Yanson, A.I., Bollinger, G.R., van den Brom, H.E., Agraït, N., van Ruitenbeek, J.M.: Formation and manipulation of a metallic wire of single gold atoms. Nature 395, 783–785 (1998)CrossRefGoogle Scholar
  46. 46.
    Chang, H.W.: Correlation of wear with oxidation of carbon–carbon composites. Wear 80, 7–14 (1982)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Gianpietro Moras
    • 1
    • 2
  • Lars Pastewka
    • 1
    • 3
  • Peter Gumbsch
    • 1
    • 2
  • Michael Moseler
    • 1
    • 4
  1. 1.Fraunhofer Institute for Mechanics of Materials IWMFreiburgGermany
  2. 2.Karlsruhe Institute of Technology, Institute of Applied Materials—Reliability of Components and Systems (IAM-ZBS)KarlsruheGermany
  3. 3.Department of Physics and AstronomyJohns Hopkins UniversityBaltimoreUSA
  4. 4.University of Freiburg, Institute of PhysicsFreiburgGermany

Personalised recommendations