Advertisement

Tribology Letters

, 44:335 | Cite as

Theoretical and Experimental Analysis of a Laser Textured Thrust Bearing

  • Victor Gabriel MarianEmail author
  • Dumitru Gabriel
  • Gunter Knoll
  • Salvatore Filippone
Original Paper

Abstract

In this article, a laser partially textured thrust bearing is theoretically and experimentally analyzed. An adiabatic model is developed in order to theoretically investigate the performances of the bearing. The bearing sample is partially textured both in radial and circumferential direction using the laser texturing process. The performance of the bearing (fluid film thickness and friction torque) is evaluated on a specially adapted test rig and the experimental results are compared with the theoretical model. A good agreement is found between the theoretical model and the experimental data. Also a comparison between a laser textured bearing and a bearing textured using the photolithographic method is presented.

Keywords

Hydrodynamic lubrication Hydrodynamic bearings Surface modification Thermal effects in hydrodynamics 

List of Symbols

Bt

Textured width of a bearing pad

Btot

Total width of a bearing pad

c

Specific heat

E

Adiabatic number, \(\frac{2 U \eta_{\rm i} \beta L_{\rm tot}}{\rho c h_{\rm m}^2}\)

F

Load carrying capacity

Fa

Axial force

\(\overline{F}\)

Dimensionless load carrying capacity, \(\frac{F h_{\rm m}^2}{\mu U B_{{\rm tot}} L_{\rm tot}^2}\)

Ff

Friction force

\(\overline{F}_{\rm f}\)

Dimensionless friction force, \(\frac{F_{\rm f} h_{\rm m}}{\mu U B_{\rm tot} L_{\rm tot}}\)

h

Film thickness

hc

Dimple depth

hm

Minimal film thickness

\(\overline{h}\)

Dimensionless film depth, h/h m

\(\overline{h}_{\rm c}\)

Dimensionless dimple depth, h c/h m

lc

Width of bearing oil supply channels at mean radius

L

Cell dimension

Lt

Textured length of bearing pad

Ltot

Total length of bearing pad

Mf

Friction torque

\(\overline{M}_{\rm f}\)

Dimensionless friction torque, \({\frac{M_{\rm f} h_{\rm m}}{\eta_{\rm i} U L_{\rm tot} B_{\rm tot} r_{\rm i}}}\)

n

Rotation speed of runner

ns

Number of bearing pads

N1

Number of dimples on each row

N2

Number of dimples on each column

p

Local pressure

\(\overline{p}\)

Dimensionless pressure, \(\frac{p h_{\rm m}^2}{\eta_{\rm i} U L_{\rm tot}}\)

rc

Dimple radius

\(\overline{r}_{\rm c}\)

Dimensionless dimple radius, r c/h m

re

Outer radius of bearing

ri

Inner radius of bearing

\(\overline{r}_{\rm e}\)

Outer dimensionless radius of bearing, r e/r i

T

Temperature

Ti

Inlet lubricant temperature

u

Velocity on x direction

U

Velocity of runner at mean radius

v

Velocity on z direction

\(\overline{x}\)

Dimensionless x coordinate, x/L tot

\(\overline{z}\)

dimensionless z coordinate, z/L tot

ρ

Fluid density

ρt

Dimple area density, \(\frac{\pi r_{\rm c}^2}{L^2}\)

α1

Textured fraction on length, L t / L tot

α2

Textured fraction on width, B t / B tot

β

Viscosity–temperature coefficient

η

Fluid dynamic viscosity

ηi

Fluid dynamic viscosity at inlet temperature, T i

\(\overline{\eta}\)

Dimensionless dynamic viscosity, η/ηi

τ

Shear stress

μ

Friction coefficient, F f/F

\(\overline{\mu}\)

Dimensionless friction coefficient, \(\overline{F}_{\rm f}/ \overline{F}\)

Notes

Acknowledgments

Financial support for the study described in this article was provided by the German Academic Exchange Service and Sectoral Operational Programme Human Resources Development 2007–2013 of the Romanian Ministry of Labour, Family, and Social Protection POSDRU/89/1.5/S/62557. The authors express their gratitude to Mr. Thomas Smetana of INA Schaeffler for providing the bearing specimens and to prof. Mircea D. Pascovici for his precious advices.

References

  1. 1.
    Hamilton, D.B., Walowit, J.A., Allen, C.M.: A theory of lubrication by micro irregularities. J. Basic Eng. 88(1), 177–185 (1966).Google Scholar
  2. 2.
    Haefke, H., Cerbig, Y., Dumitru, G., Romano, V.: Microtexturing of functional surfaces for improving their tribological performance. In: Proceedings of the International Tribology Conference, Nagasaki, pp. 217–221 (2000).Google Scholar
  3. 3.
    Etsion, I., Halperin, G.: A laser surface textured hydrostatic mechanical seal. Tribol. Trans. 45(3), 430 (2002).CrossRefGoogle Scholar
  4. 4.
    Golloch, R., Merker, G.P., Kessen, U., Brinkmann, S.: Benefits of laser-structured cylinder liners for internal combustion engines. In: Proceedings of the 14th International Colloquium on Tribology, vol. 1, pp. 321–328. Esslingen (2004).Google Scholar
  5. 5.
    Kligerman, Y., Etsion, I., Shinkarenko, A.: Improving tribological performance of piston rings by partial surface texturing. J. Tribol. 127(3), 632 (2005).CrossRefGoogle Scholar
  6. 6.
    Ronen, A., Etsion, I., Kligerman, Y.: Friction-reducing surface-texturing in reciprocating automotive components. Tribol. Trans. 44(3), 359 (2001).CrossRefGoogle Scholar
  7. 7.
    Ryk, G., Kligerman, Y., Etsion, I.: Experimental investigation of laser surface texturing for reciprocating automotive components. Tribol. Trans. 45(4), 444 (2002).CrossRefGoogle Scholar
  8. 8.
    Wang, X., Kato, K., Adachi, K., Aizawa, K.: Loads carrying capacity map for the surface texture design of SiC thrust bearing sliding in water. Tribol. Int. 36(3), 189–197 (2003).CrossRefGoogle Scholar
  9. 9.
    Buscaglia Gustavo, C., Ciuperca, I., Jai, M.: The effect of periodic textures on the static characteristics of thrust bearings. J. Tribol. 127(4), 899 (2005).CrossRefGoogle Scholar
  10. 10 .
    Sahlin, F., Almqvist, A., Larsson, R., Glavatskih, S.: A cavitation algorithm for arbitrary lubricant compressibility. Tribol. Int. 40(8), 1294–1300 (2007).CrossRefGoogle Scholar
  11. 11.
    Kristian, T.: A new class of bearings based on roughness effects. In: Proceedings of the STLE/ASME Tribology Conference, Orlando (1999).Google Scholar
  12. 12.
    Tønder, K.: Hydrodynamic effects of tailored inlet roughnesses: extended theory. Tribol. Int. 37(2), 137–142 (2004).CrossRefGoogle Scholar
  13. 13.
    Etsion, I., Kligerman, Y., Halperin, G.: Analytical and experimental investigation of laser-textured mechanical seal faces. Tribol. Trans. 42(3), 511–516 (1999).CrossRefGoogle Scholar
  14. 14.
    Etsion, I.: State of the art in laser surface texturing. J. Tribol. 127(1), 248 (2005).CrossRefGoogle Scholar
  15. 15.
    Marian, V.G., Kilian, M, Scholz, W.: Theoretical and experimental analysis of a partially textured thrust bearing with square dimples. Proc IME J. J. Eng. Tribol. 221(7), 771–778 (2007).Google Scholar
  16. 16.
    Brizmer, V., Kligerman, Y., Etsion, I.: A laser surface textured parallel thrust bearing. Tribol. Trans. 46(3), 397 (2003).CrossRefGoogle Scholar
  17. 17.
    Etsion, I., Halperin, G., Brizmer, V., Kligerman, Y.: Experimental investigation of laser surface textured parallel thrust bearings. Tribology Letters 17(2), 295–300 (2004).CrossRefGoogle Scholar
  18. 18.
    Pinkus, O., Lund, JW.: Centrifugal effects in thrust bearings and seals under laminar conditions. J. Lubr. Technol. 103(1), 126–136 (1981).Google Scholar
  19. 19.
    Filippone, S., Colajanni, M.: PSBLAS: a library for parallel linear algebra computation on sparse matrices. ACM Trans. Math. Softw. 26(4), 527–550 (2000).CrossRefGoogle Scholar
  20. 20.
    D’Ambra, P., di Serafino, D., Filippone, S.: On the development of PSBLAS-based parallel two-level schwarz preconditioners. Appl. Numer. Math. 57(11-12), 1181–1196 (2007).CrossRefGoogle Scholar
  21. 21.
    Dowson, D.: A generalized reynolds equation for fluid-film lubrication. Int. J. Mech. Sci. 4(2), (1961).Google Scholar
  22. 22.
    Hunter, W.B., Zienkiewicz, O.C.: Effect of temperature variations across the lubricant films in the theory of hydrodynamic lubrication. Arch. J. Mech. Eng. Sci. 2(1), 52–58 (1960).CrossRefGoogle Scholar
  23. 23.
    Constantinescu, V.: Sliding Bearings. Allerton Press, New York (1985).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Victor Gabriel Marian
    • 1
    Email author
  • Dumitru Gabriel
    • 2
  • Gunter Knoll
    • 3
  • Salvatore Filippone
    • 4
  1. 1.Laboratory of Machine Elements and TribologyUniversity Politehnica of BucharestBucharestRomania
  2. 2.BCI GroupGrenchenSwitzerland
  3. 3.Institute for Engineering Design and Machine ElementsUniversity of KasselKasselGermany
  4. 4.Department of Mechanical EngineeringUniversity of Rome Tor VergataRomaItaly

Personalised recommendations