Tribology Letters

, 44:387 | Cite as

Friction Measurements on Contact Lenses in Their Operating Environment

  • M. Roba
  • E. G. Duncan
  • G. A. Hill
  • N. D. Spencer
  • S. G. P. Tosatti
Methods Paper

Abstract

An important issue concerning the use of soft contact lenses is comfort, which, among other factors, has been related to the level of friction between the anterior side of the lens and the inner eyelid. Although several studies have been carried out to investigate the frictional properties of contact lenses, these have not taken the physiological environment of the eye into account. In use, lenses are in contact with proteins present in tears, with corneal cells and with the palpebral conjunctiva (clear membrane on inner eyelid). The focus of this study was to establish a biologically relevant measurement protocol for the investigation of friction of contact lenses that would mimic the eye’s physiological environment. By optimizing parameters such as the composition of the friction counter surface, the lubricant solution, the normal load and the velocity, an ideal protocol and setup for microtribological testing could be established and used to perform a comparative study of various commercially available soft contact lenses.

Keywords

Contact lens Microtribometer Mucin Friction Hydrogel 

References

  1. 1.
    Nichols, J.J.: Contact lenses 2009. Cont. Lens Spectr. 1, 24–32 (2010)Google Scholar
  2. 2.
    Rumpakis, J.M.B.: New data on contact lens dropouts: an international perspective. Rev. Optom. 147(1), 37–42 (2010)Google Scholar
  3. 3.
    Young, G.: Exploring the relationship between materials and ocular health and comfort. Cont. Lens Spectr. 22, 37–40 (2007)Google Scholar
  4. 4.
    Rennie, A.C., Dickrell, P.L., Sawyer, W.G.: Friction coefficient of soft contact lenses: measurements and modeling. Tribol. Lett. 18(4), 499–504 (2005)CrossRefGoogle Scholar
  5. 5.
    Nairn, J.A., Jiang, T.: Measurement of the friction and lubricity properties of contact lenses. Proceedings of ANTEC’95, Boston (1995)Google Scholar
  6. 6.
    Ngai, V., Medley, J.B., Jones, L., Forrest, J., Teichroeb, J.: Friction of contact lenses: silicone hydrogel versus conventional hydrogel. Tribol. Interface Eng. Ser 48, 371–379 (2005)CrossRefGoogle Scholar
  7. 7.
    Dunn, A.C., Cobb, J.A., Kantzios, A.N., Lee, S.J., Sarntinoranont, M., Tran-Son-Tay, R., Sawyer, W.G.: Friction coefficient measurement of hydrogel materials on living epithelial cells. Tribol. Lett. 30(1), 13–19 (2008)CrossRefGoogle Scholar
  8. 8.
    Van Beek, M., Jones, L., Sheardown, H.: Hyaluronic acid containing hydrogels for the reduction of protein adsorption. Biomaterials 29(7), 780–789 (2008)CrossRefGoogle Scholar
  9. 9.
    Young, G., Keir, N., Hunt, C., Woods, C.A.: Clinical evaluation of long-term users of two contact lens care preservative systems. Eye Cont. Lens Sci. Clin. Pract. 35(2), 50–58 (2009)CrossRefGoogle Scholar
  10. 10.
    Simmons, P.A., Donshik, P.C., Kelly, W.F., Vehige, J.G.: Conditioning of hydrogel lenses by a multipurpose solution containing an ocular lubricant. Cont. Lens Assoc. Ophthalmol. J. 27(4), 192–194 (2001)Google Scholar
  11. 11.
    Barabino, S., Rolando, M., Camicione, P., Chen, W., Calabria, G.: Effects of a 0.9% sodium chloride ophthalmic solution on the ocular surface of symptomatic contact lens wearers. Can. J. Ophthalmol. 40(1), 45–50 (2005)Google Scholar
  12. 12.
    Santodomingo-Rubido, J., Barrado-Navascues, E., Rubido-Crespo, M.J.: Ocular surface comfort during the day assessed by instant reporting in different types of contact and non-contact lens wearers. Eye Cont. Lens Sci. Clin. Pract. 36(2), 96–100 (2010)CrossRefGoogle Scholar
  13. 13.
    Ozkan, J.J., Snoxall, B., Maher, A., Papas, E.: Lubricants and their effect on comfort with silicone hydrogel and conventional hydrogel lens wear. Invest. Ophthalmol. Vis. Sci. 45, 3161–3164 (2004)CrossRefGoogle Scholar
  14. 14.
    Fornasiero, F., Prausnitz, J.M., Radke, C.J.: Post-lens tear-film depletion due to evaporative dehydration of a soft contact lens. J. Membr. Sci. 275(1–2), 229–243 (2006)CrossRefGoogle Scholar
  15. 15.
    Shaw, A.J., Collins, M.J., Davis, B.A., Carney, L.G.: Eyelid pressure and contact with the ocular surface. Invest. Ophthalmol. Vis. Sci. 51(4), 1911–1917 (2010)CrossRefGoogle Scholar
  16. 16.
    Conway, H.D., Richman, M.: Effects of contact lens deformation on tear film pressures induced during blinking. Am. J. Optom. Physiol. Opt. 59(1), 13–20 (1982)Google Scholar
  17. 17.
    Dong, J., Haugstad, G.D.: Tribology study of PVA contact lens in ionic aqueous environments. Proceedings of American Chemical Society, National Meeting, Polymer Preprints, Baltimore (2005)Google Scholar
  18. 18.
    Lydon, F., Benning, B., Young, R., Tighe, B.J.: Frictional behaviour of contact lenses and ophthalmic solutions: measurement and clinical consequences. Contact Lens Ant. Eye. 25, 35 (2002)Google Scholar
  19. 19.
    Chaudhri, M.M., Yoffe, E.H.: The area of contact between a small sphere and a flat surface. Philos. Mag. A. 44(3), 667–675 (1981)CrossRefGoogle Scholar
  20. 20.
    French, K.: Contact lens material properties part 2—mechanical behavior and modulus. Optician. 230(6026), 29–34 (2005)Google Scholar
  21. 21.
    Garrett, Q., Milthorpe, B.K.: Human serum albumin adsorption on hydrogel contact lenses in vitro. Invest. Ophthalmol. Vis. Sci. 37(13), 2594–2602 (1996)Google Scholar
  22. 22.
    Jones, L.: Modern contact lens materials: a clinical performance update. Cont. Lens Spectr. 17, 24–35 (2002)Google Scholar
  23. 23.
    Lee, S., Müller, M., Ratoi-Salagean, M., Vörös, J., Pasche, S., De Paul, S.M., Spikes, H.A., Textor, M., Spencer, N.D.: Boundary lubrication of oxide surfaces by poly(l-lysine)-g-poly(ethylene glycol) (PLL-g-PEG) in aqueous media. Tribol. Lett. 15(3), 231–239 (2003)CrossRefGoogle Scholar
  24. 24.
    Belyakova, L., Varvarin, A., Lyashenko, D., Roik, N.: Study of interaction of poly(1-vinyl-2-pyrrolidone) with a surface of highly dispersed amorphous silica. J. Coll. Interface Sci. 264(1), 2–6 (2003)CrossRefGoogle Scholar
  25. 25.
    Janssen, P.T., Bijsterveld, O.P.V.: Origin and biosynthesis of human tear fluid proteins. Invest. Ophthalmol. Vis. Sci. 24(5), 623–630 (1983)Google Scholar
  26. 26.
    Yoon, K.C., Heo, H., Im, S.K., You, I.C., Kim, Y.H., Park, Y.G.: Comparison of autologous serum and umbilical cord serum eye drops for dry eye syndrome. Am. J. Optom 44(1), 86–92 (2007)Google Scholar
  27. 27.
    Hill, G.A., Molock, F.F., Jozefowicz, M., Rathore, O., Jozefonvicz, J., Fadli, Z.: Antimicrobial coatings for ophthalmic devices. US Patent 20040208983A1, 21 October 2004Google Scholar
  28. 28.
    Cher, I.: A new look at lubrication of the ocular surface: fluid mechanics behind the blinking eyelids. Ocul. Surf. 6(2), 79–86 (2008)Google Scholar
  29. 29.
    Carney, F.P., Nash, W.L., Sentell, K.B.: The adsorption of major tear film lipids in vitro to various silicone hydrogels over time. Invest Ophthalmol Vis Sci. 49(1), 120–124 (2008)CrossRefGoogle Scholar
  30. 30.
    Broad, R.A.: Contact lens are formed of a composition comprising reaction product of silicone-containing monomer; 3-methacryloxypropyl tris(trimethylsiloxy)silane; N-vinyl pyrrolidone; and other non-ionic hydrophilic monomer. World Intellectual Property Organization WO2008061992-A2, 29 May 2008Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • M. Roba
    • 1
  • E. G. Duncan
    • 1
  • G. A. Hill
    • 1
    • 2
    • 3
    • 4
  • N. D. Spencer
    • 2
  • S. G. P. Tosatti
    • 1
  1. 1.SuSoS AGDuebendorfSwitzerland
  2. 2.Department of Materials, Laboratory for Surface Science and TechnologyETH ZurichZurichSwitzerland
  3. 3.VISTAKON, A Division of Johnson & Johnson Vision Care IncJacksonvilleUSA
  4. 4.GHBiomaterialsAtlantic BeachUSA

Personalised recommendations