Tribology Letters

, 43:369 | Cite as

Atomic Friction Modulation on the Reconstructed Au(111) Surface

  • Qunyang Li
  • Yalin Dong
  • Ashlie Martini
  • Robert W. Carpick
Original Paper


Friction between a nanoscale tip and a reconstructed Au(111) surface is investigated both by atomic force microscopy (AFM) and molecular statics calculations. Lateral force AFM images exhibit atomic lattice stick–slip behavior with a superstructure corresponding to the herringbone reconstruction pattern. However, the superstructure contrast is not primarily due to variations in the local frictional dissipation (which corresponds to the local width of the friction loop). Rather, the contrast occurs primarily because the local centerline position of the friction loop is periodically shifted from its usual value of zero. Qualitatively, similar behavior is reproduced in atomistic simulations of an AFM tip sliding on the reconstructed Au(111) substrate. In both simulations and experiments, this centerline modulation effect is not observed on unreconstructed surfaces. Similarly, using a topographically flat surface as a hypothetical control system, the simulations show that the centerline modulation is not caused by variations in the reconstructed surface’s topography. Rather, we attribute it to the long-range variation of the local average value of the tip-sample interaction potential that arises from the surface reconstruction. In other words, surface atoms located at unfavorable sites, i.e., in the transition between face-centered-cubic (FCC) and hexagonal-close-packed (HCP) regions, have a higher surface free energy. This leads to a varying conservative force which locally shifts the centerline position of the friction force. This demonstrates that stick–slip behavior in AFM can serve as a rather sensitive probe of the local energetics of surface atoms, with an attainable lateral spatial resolution of a few nanometers.


Nanotribology Stick–slip AFM Friction mechanisms Gold 



This study was funded by the National Science Foundation under grants CMMI-0758604 & 0800154.


  1. 1.
    Mate, C.M.: Tribology on the Small Scale: A Bottom up Approach to Friction Lubrication and Wear. Oxford University Press, New York (2008)Google Scholar
  2. 2.
    Prandtl, L.: Ein gedankenmodell zur kinetischen theorie der festen körper. Z. Angew. Math. Mech. 8(2), 85–106 (1928)CrossRefGoogle Scholar
  3. 3.
    Tomlinson, G.A.: A molecular theory of friction. Philos. Mag. Series 7 7(46), 905–939 (1929)Google Scholar
  4. 4.
    Mate, C.M., McClelland, G.M., Erlandsson, R., Chiang, S.: Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59(17), 1942–1945 (1987)CrossRefGoogle Scholar
  5. 5.
    Dienwiebel, M., Verhoeven, G.S., Pradeep, N., Frenken, J.W.M., Heimberg, J.A., Zandbergen, H.W.: Superlubricity of graphite. Phys. Rev. Lett. 92(12), 126101 (2004)CrossRefGoogle Scholar
  6. 6.
    Socoliuc, A., Bennewitz, R., Gnecco, E., Meyer, E.: Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction. Phys. Rev. Lett. 92(13), 134301 (2004)CrossRefGoogle Scholar
  7. 7.
    Socoliuc, A., Gnecco, E., Maier, S., et al.: Atomic-scale control of friction by actuation of nanometer-sized contacts. Science 313(5784), 207–210 (2006)CrossRefGoogle Scholar
  8. 8.
    Medyanik, S.N., Liu, W.K., Sung, I.H., Carpick, R.W.: Predictions and observations of multiple slip modes in atomic-scale friction. Phys. Rev. Lett. 97(13), 136106 (2006)CrossRefGoogle Scholar
  9. 9.
    Roth, R., Glatzel, T., Steiner, P., Gnecco, E., Baratoff, A., Meyer, E.: Multiple slips in atomic-scale friction: an indicator for the lateral contact damping. Tribol. Lett. 39(1), 63–69 (2010)CrossRefGoogle Scholar
  10. 10.
    Conley, W.G., Raman, A., Krousgrill, C.M.: Nonlinear dynamics in tomlinson’s model for atomic-scale friction and friction force microscopy. J. Appl. Phys. 98(5), 10 (2005)CrossRefGoogle Scholar
  11. 11.
    Morita, S., Fujisawa, S., Sugawara, Y.: Spatially quantized friction with a lattice periodicity. Surf. Sci. Rep. 23(1), 1–41 (1996)CrossRefGoogle Scholar
  12. 12.
    Filleter, T., McChesney, J.L., Bostwick, A., et al.: Friction and dissipation in epitaxial graphene films. Phys. Rev. Lett. 102(8), 086102 (2009)CrossRefGoogle Scholar
  13. 13.
    Lee, C., Li, Q.Y., Kalb, W., et al.: Frictional characteristics of atomically thin sheets. Science 328(5974), 76–80 (2010)CrossRefGoogle Scholar
  14. 14.
    Lio, A., Charych, D.H., Salmeron, M.: Comparative atomic force microscopy study of the chain length dependence of frictional properties of alkanethiols on gold and alkylsilanes on mica. J. Phys. Chem. B 101(19), 3800–3805 (1997)CrossRefGoogle Scholar
  15. 15.
    Carpick, R.W., Salmeron, M.: Scratching the surface: fundamental investigations of tribology with atomic force microscopy. Chem. Rev. 97(4), 1163–1194 (1997)CrossRefGoogle Scholar
  16. 16.
    Dedkov, G.V.: Experimental and theoretical aspects of the modern nanotribology. Phys. Status Solidi A: Appl. Res. 179(1), 3–75 (2000)CrossRefGoogle Scholar
  17. 17.
    Gnecco, E., Bennewitz, R., Gyalog, T., Meyer, E.: Friction experiments on the nanometre scale. J. Phys. Condes. Matter 13(31), R619–R642 (2001)CrossRefGoogle Scholar
  18. 18.
    Steele, W.A.: Physical interaction of gases with crystalline solids. 1. Gas-solid energies and properties of isolated adsorbed atoms. Surf. Sci. 36(1), 317–352 (1973)CrossRefGoogle Scholar
  19. 19.
    Filleter, T., Bennewitz, R.: Structural and frictional properties of graphene films on SiC(0001) studied by atomic force microscopy. Phys. Rev. B 81(15), 155412 (2010)Google Scholar
  20. 20.
    Steiner, P., Gnecco, E., Filleter, T., et al.: Atomic friction investigations on ordered superstructures. Tribol. Lett. 39(3), 321–327 (2010)CrossRefGoogle Scholar
  21. 21.
    Maier, S., Gnecco, E., Baratoff, A., Bennewitz, R., Meyer, E.: Atomic-scale friction modulated by a buried interface: combined atomic and friction force microscopy experiments. Phys. Rev. B78(4), 5 (2008)Google Scholar
  22. 22.
    Ogletree, D.F., Carpick, R.W., Salmeron, M.: Calibration of frictional forces in atomic force microscopy. Rev. Sci. Instrum. 67(9), 3298–3306 (1996)CrossRefGoogle Scholar
  23. 23.
    Bluhm, H., Schwarz, U.D., Meyer, K.P.: Anisotropy sliding friction on the triglycine sulfate(010) surface. Appl. Phys. A: Mater. Sci. Process. 61(5), 525–533 (1995)CrossRefGoogle Scholar
  24. 24.
    Liley, M., Gourdon, D., Stamou, D., et al.: Friction anisotropy and asymmetry of a compliant monolayer induced by a small molecular tilt. Science 280(5361), 273–275 (1998)CrossRefGoogle Scholar
  25. 25.
    Hisada, K., Knobler, C.M.: Microscopic friction anisotropy and asymmetry related to the molecular tilt azimuth in a monolayer of glycerol ester. Colloid. Surf. A: Physicochem. Eng. Asp. 198, 21–30 (2002)CrossRefGoogle Scholar
  26. 26.
    Maier, S., Sang, Y., Filleter, T., et al.: Fluctuations and jump dynamics in atomic friction experiments. Phys. Rev. 72(B24), 9 (2005)Google Scholar
  27. 27.
    Negri, C., Manini, N., Vanossi, A., Santoro, G.E., Tosatti, E.: AFM dissipation topography of soliton superstructures in adsorbed overlayers. Phys. Rev. B81(4), 5 (2010)Google Scholar
  28. 28.
    Szlufarska, I., Chandross, M., Carpick, R.W.: Recent advances in single-asperity nanotribology. J. Phys. D: Appl. Phys. 41(12), 123001 (2008)CrossRefGoogle Scholar
  29. 29.
    Li, Q.Y., Dong, Y.L., Perez, D., Martini, A., Carpick, R.W.: Speed dependence of atomic stick-slip friction in optimally matched experiments and molecular dynamics simulations. Phys. Rev. Lett. 106(12), 4 (2011)Google Scholar
  30. 30.
    Nogues, C., Wanunu, M.: A rapid approach to reproducible, atomically flat gold films on mica. Surf. Sci. 573(3), L383–L389 (2004)CrossRefGoogle Scholar
  31. 31.
    Harten, U., Lahee, A.M., Toennies, J.P., Woll, C.: Observation of a soliton reconstruction of Au(111) by high-resolution helium-atom diffraction. Phys. Rev. Lett. 54(24), 2619–2622 (1985)CrossRefGoogle Scholar
  32. 32.
    Woll, C., Chiang, S., Wilson, R.J., Lippel, P.H.: Determination of atom positions at stacking-fault dislocations on Au(111) by scanning tunneling microscopy. Phys. Rev. B39(11), 7988–7991 (1989)Google Scholar
  33. 33.
    Narasimhan, S., Vanderbilt, D.: Elastic stress domains and the herringbone reconstruction on Au(111). Phys. Rev. Lett. 69(10), 1564–1567 (1992)CrossRefGoogle Scholar
  34. 34.
    Nie, H.Y., Mizutani, W., Tokumoto, H.: Au(111) reconstruction observed by atomic-force microscopy with lateral force detection. Surf. Sci. 311(1–2), L649–L654 (1994)CrossRefGoogle Scholar
  35. 35.
    Voter, A.F.: Los alamos unclassified technical report la-ur-93-3901 (1993)Google Scholar
  36. 36.
    Haftel, M.I.: Surface reconstruction of platinum and gold and the embedded-atom model. Phys. Rev. B 48(4), 2611–2622 (1993)CrossRefGoogle Scholar
  37. 37.
    Dong, Y.L., Perez, D., Voter, A.F., Martini, A.: The roles of statics and dynamics in determining transitions between atomic friction regimes. Tribol. Lett. 42(1), 99–107 (2011)CrossRefGoogle Scholar
  38. 38.
    Muser, M.H., Urbakh, M., Robbins, M.O.: Statistical mechanics of static and low-velocity kinetic friction. Adv. Chem. Phys. 126, 187–272 (2003)CrossRefGoogle Scholar
  39. 39.
    Shimizu, J., Eda, H., Yoritsune, M., Ohmura, E.: Molecular dynamics simulation of friction on the atomic scale. Nanotechnology 9(2), 118–123 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Qunyang Li
    • 1
  • Yalin Dong
    • 2
  • Ashlie Martini
    • 2
  • Robert W. Carpick
    • 1
  1. 1.Department of Mechanical Engineering and Applied MechanicsUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.School of Mechanical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations