Advertisement

Tribology Letters

, Volume 43, Issue 3, pp 361–368 | Cite as

In Situ Observation of Wear Process Before and During Scuffing in Sliding Contact

  • Kazuyuki YagiEmail author
  • Yukito Ebisu
  • Joichi Sugimura
  • Seiji Kajita
  • Toshihide Ohmori
  • Atsushi Suzuki
Original Paper

Abstract

In this study, a direct observation of a point contact area was conducted to understand the scuffing phenomenon. The contact area was produced between a rotating sapphire disc and a stationary steel ball and it was lubricated using n-hexadecane. The image detected by a colour digital CCD camera, load, and friction were synchronously recorded by a computer during the test. It was found that wear debris produced in the contact area played an important role in the wear process, which includes running-in and scuffing. In the test, debris particles accumulated in the inlet zone, and some particles entered the contact area to cause abrasive wear of the ball surface, even in the light-load stages. During the running-in process, the abrasive wear by debris particles changed the conformity between the sliding surfaces. In the high-load stage, just before the occurrence of scuffing, the whole contact area was flattened at once. When scuffing occurred, the contact area suddenly expanded. The conformity of the contact area was dramatically changed during its expansion. The flattening of the whole contact area and dramatic expansion with changing the conformity seemed to play important roles in scuffing.

Keywords

Scuffing Running-in Friction Wear 

References

  1. 1.
    Salomon, G.: Failure criteria in thin film lubrication — the IRG program. Wear 36(1), 1–6 (1976). doi: 10.1016/0043-1648(76)90137-X CrossRefGoogle Scholar
  2. 2.
    Dyson, A.: Scuffing — a review. Tribol. Int. 8(2), 77–87 (1975). doi: 10.1016/0301-679X(75)90056-0 CrossRefGoogle Scholar
  3. 3.
    Dyson, A.: Scuffing — a review: Part 2: the mechanism of scuffing. Tribol. Int. 8(3), 117–122 (1975). doi: 10.1016/0301-679X(75)90029-8 CrossRefGoogle Scholar
  4. 4.
    Ludema, K.C.: A review of scuffing and running-in of lubricated surfaces, with asperities and oxides in perspective. Wear 100(1–3), 315–331 (1984). doi: 10.1016/0043-1648(84)90019-X CrossRefGoogle Scholar
  5. 5.
    Memorandum on definitions, symbols and units. In: Proceedings of the Conference on Lubrication and Wear, the Institution of Mechanical Engineers, London, 4 (1957)Google Scholar
  6. 6.
    Glossary of Terms and Definitions in the Field of Friction, Wear and Lubrication: Tribology, Research Group on Wear of Engineering Materials, Organisation for Economic Co-Operation and Development, Paris, 53 (1969)Google Scholar
  7. 7.
    Hardy, W.B., Hardy, J.K.: Note on static friction and on the lubricating properties of certain chemical substances. Phil. Mag. Series 6 38(223), 32–48 (1919). doi: 10.1080/14786440708635927 CrossRefGoogle Scholar
  8. 8.
    Bowden, F.P., Tabor, D.: The seizure of metals. Proc. Inst. Mech. Eng. 160, 380–383 (1949). doi: 10.1243/PIME_PROC_1949_160_036_02 CrossRefGoogle Scholar
  9. 9.
    Semenov, A.P.: The phenomenon of seizure and its investigation. Wear 4(1), 1–9 (1960). doi: 10.1016/0043-1648(61)90236-8 CrossRefGoogle Scholar
  10. 10.
    Mishina, H., Sasada, T.: Observation of micro-structure in seized portion and mechanism of seizure. J. Tribol.-T. ASME 108, 28–133 (1986). doi: 10.1115/1.3261132 Google Scholar
  11. 11.
    Campany, R.G., Wilson, R.W.: The metallurgy of scoring and scuffing failure. In: Dowson, D. et al. (ed.), Proceedings of the 9th Leeds-Lyon Symposium on Tribology, Tribology of Reciprocating Engines, Butterworth & Co Ltd, Guildford, UK, 201–211 (1983)Google Scholar
  12. 12.
    Wang, Y., Tian, T.: Exploring operation mechanisms of the flexible metal-to-metal face seal: part II—scoring and leakage analysis. Tribol. T. 53(5), 649–657 (2010). doi: 10.1080/10402001003658318 CrossRefGoogle Scholar
  13. 13.
    Ling, F.F., Saibel, E.: Thermal aspects of galling of dry metallic surfaces in sliding contact. Wear 1(2), 80–91 (1957/1958) doi: 10.1016/0043-1648(57)90002-9 Google Scholar
  14. 14.
    Rabinowicz, E.: Friction seizure and galling seizure. Wear 25(3), 357–363 (1973). doi: 10.1016/0043-1648(73)90006-9 CrossRefGoogle Scholar
  15. 15.
    Ohmori, T., Kitamura, K., Danno, A., Kawamura, M.: Evaluation of galling prevention properties of cold-forging oils by ball penetration test. Wear 155(1), 183–192 (1992). doi: 10.1016/0043-1648(92)90117-Q CrossRefGoogle Scholar
  16. 16.
    Blok, H.: The flash temperature concept. Wear 6(6), 483–494 (1963). doi: 10.1016/0043-1648(63)90283-7 CrossRefGoogle Scholar
  17. 17.
    Fein, R.S.: Transition temperatures with four ball machine. ASLE Trans. 3(1), 34–39 (1960). doi: 10.1080/05698196008972384 Google Scholar
  18. 18.
    Fein, R.S.: Effects of lubricants on transition temperature. ASLE Trans. 8(1), 59–68 (1965). doi: 10.1080/05698196508972079 Google Scholar
  19. 19.
    Bell, J.C., Dyson, A.: The effect of some operating factors on the scuffing of hardened steel discs. Elastohydrodynamic Lubrication 1972 Symposium, the Institution of Mechanical Engineers, London, 61–67 (1972)Google Scholar
  20. 20.
    Bell, J.C., Dyson, A., Hadley, J.W.: The effects of rolling and sliding speeds on the scuffing of lubricated steel discs. ASLE Trans. 18(1), 62–73 (1975). doi: 10.1080/05698197508982748 Google Scholar
  21. 21.
    Christensen, H.: Failure by collapse of hydrodynamic oil films. Wear 22(3), 359–366 (1972). doi: 10.1016/0043-1648(72)90394-8 CrossRefGoogle Scholar
  22. 22.
    Dyson, A.: The failure of elastohydrodynamic lubrication of circumferentially ground discs. Proc. Inst. Mech. Eng. 190, 699–711 (1976). doi: 10.1243/PIME_PROC_1976_190_074_02 CrossRefGoogle Scholar
  23. 23.
    Enthoven, J., Spikes, H.A.: Infrared and visual study of the mechanisms of scuffing. Tribol. T. 39(2), 441–447 (1996). doi: 10.1080/10402009608983550 CrossRefGoogle Scholar
  24. 24.
    O’Donoghue, J.P., Cameron, A.: Temperature at scuffing. Proc. Inst. Mech. Eng. 180, Part 3B, 85–94 (1965–1966) doi: 10.1243/PIME_CONF_1965_180_067_02
  25. 25.
    Batchelor, A.W., Stachowiak, G.W.: Model of scuffing based on the vulnerability of an elastohydrodynamic oil film to chemical degradation catalyzed by the contacting surfaces. Tribol. Lett. 1(4), 349–365 (1995). doi: 10.1007/BF00174259 CrossRefGoogle Scholar
  26. 26.
    Burwell, J.T., Strang, C.D.: On the empirical law of adhesive wear. J. Appl. Phys. 23(1), 18–28 (1952). doi: 10.1063/1.1701970 CrossRefGoogle Scholar
  27. 27.
    Barber, J.R.: Thermoelastic instabilities in the sliding of conforming solids. Proc. R. Soc. Lond. A 312(1510), 381–394 (1969). doi: 10.1098/rspa.1969.0165 CrossRefGoogle Scholar
  28. 28.
    Hershberger, J., Ajayi, O.O., Zhang, J., Yoon, H., Fenske, G.R.: Evidence of scuffing initiation by adiabatic shear instability. Wear 258(10), 1471–1478 (2005). doi: 10.1016/j.wear.2004.10.010 CrossRefGoogle Scholar
  29. 29.
    Matthews, M.A., Rodden, J.B., Akgerman, A.: High-temperature diffusion, viscosity, and density measurements in n-hexadecane. J. Chem. Eng. Data 32(3), 317–319 (1987). doi: 10.1021/je00049a011 CrossRefGoogle Scholar
  30. 30.
    Hartl, M., Krupka, I., Poliscuk, R., Liska, M., Molimard, J., Querry, M., Vergne, P.: Thin film colorimetric interferometry. Tribol. T. 44(2), 270–276 (2001). doi: 10.1080/10402000108982458 CrossRefGoogle Scholar
  31. 31.
    Sheiretov, T., Yoon, H., Cusano, C.: Scuffing under dry sliding conditions—Part I: Experimental studies. Tribol. T. 41(4), 435–446 (1998). doi: 10.1080/10402009808983768 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Kazuyuki Yagi
    • 1
    Email author
  • Yukito Ebisu
    • 1
  • Joichi Sugimura
    • 1
  • Seiji Kajita
    • 2
  • Toshihide Ohmori
    • 2
  • Atsushi Suzuki
    • 3
  1. 1.Department of Mechanical EngineeringKyushu UniversityNishi-ku, FukuokaJapan
  2. 2.Toyota Central R&D Labs., Inc.Nagakute, AichiJapan
  3. 3.Toyota Motor CorporationToyota, AichiJapan

Personalised recommendations