Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Molecular Dynamics Simulation of Lubricant Redistribution and Transfer at Near-Contact Head-Disk Interface


When the spacing between the slider and lubricant in a hard disk drive decreases to less than 5 nm, the effect of the intermolecular force between these two surfaces can no longer be ignored. This effect on the lubricant distribution at the near-contact head disk interface is investigated via molecular dynamics method. In this study, the lubricant is confined between a smooth disk surface and a rough slider surface represented as a partially cosinusoidal wave. The simulation results reveal that the intermolecular force-induced meniscus formation at the near-contact head disk interface is strongly sensitive to the slider-to-disk separation, lubricant film thickness and the asperity shape (or roughness) of the slider. The attractive van der Waals forces between the slider and lubricant become weaker with increasing slider-to-disk separation and asperity mid-height, but decreasing lubricant film thickness and asperity mid-width. The Hamaker theory application to van der Waals interactions is also introduced to verify the molecular dynamics simulation. It is found that the critical separation, below which the lubricant will lose its stability to form a meniscus, increases approximately linearly with the lubricant film thickness, for slider surfaces with or without roughness both in the molecular dynamics simulation and Hamaker theory application to van der Waals interactions. Moreover, it is observed that the critical separation between a smooth disk and rough slider surface will slightly decrease when the asperity mid-height increases. The same phenomenon is observed when the asperity mid-width reduces.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Wood, R.: The feasibility of magnetic recording at 1 Terabit per square inch. IEEE Trans. Magn. 36, 36–42 (2000)

  2. 2.

    Mate, C.M.: Application of disjoining and capillary pressure to liquid lubricant films in magnetic recording. J. Appl. Phys. 72, 3084–3090 (1992)

  3. 3.

    Gui, J., Marchon, B.: A stiction model for a head-disk interface of a rigid disk drive. J. Appl. Phys. 78, 4206–4217 (1995)

  4. 4.

    Chilamakuri, S.K., Bhushan, B.: A comprehensive kinetic meniscus model for prediction of long-term static friction. J. Appl. Phys. 86, 4649–4656 (1999)

  5. 5.

    Chen, Y.F., Weng, J.G., Lukes, J.R., Majumdar, A., Tien, C.L.: Molecular dynamics simulation of the meniscus formation between two surfaces. Appl. Phys. Lett. 79, 1267–1269 (2001)

  6. 6.

    Wu, L., Bogy, D.B.: Effect of the intermolecular forces on the flying attitude of sub-5 nm flying height air bearing sliders in hard disk drives. J. Tribol. 124, 562–567 (2002)

  7. 7.

    Thornton, B.H., Bogy, D.B.: Head-disk interface dynamic instability due to intermolecular forces. IEEE Trans. Magn. 39, 2420–2422 (2003)

  8. 8.

    Chen, D., Bogy, D.B.: Intermolecular force and surface roughness models for air bearing simulations for sub-5 nm flying height sliders. Microsyst. Technol. 13, 1211–1217 (2007)

  9. 9.

    Lee, S.C., Polycarpou, A.A.: Tri-state dynamic model and adhesive effects on flying-height modulation for ultra-low flying head disk interfaces. Microsyst. Technol. 10, 649–661 (2004)

  10. 10.

    Lee, S.C., Polycarpou, A.A.: Adhesion forces for sub-10 nm flying-height magnetic storage head disk interfaces. J. Tribol. 126, 334–341 (2004)

  11. 11.

    Zhang, B., Nakajima, A.: Surface force in slider air bearings of hard disks. Tribol. Interface Eng. Ser. 39, 209–217 (2001)

  12. 12.

    Dagastine, R.R., White, L.R., Jones, P.M., Hsia, Y.T.: Effect of media overcoat on van der Waals interaction at the head-disk interface. J. Appl. Phys. 97, 126106 (2005)

  13. 13.

    Zhang, M.S., Liu, B., Tjiptoharsono, F.: Approaches to reduce effect of short-range interactions in head disk interface. Microsyst. Technol. 15, 1591–1595 (2009)

  14. 14.

    Li, J.H., Liu, B., Hua, W., Ma, Y.S.: Effects of intermolecular forces on deep sub-10 nm spaced sliders. IEEE Trans. Magn. 38, 2141–2143 (2002)

  15. 15.

    Shimizu, Y., Xu, J.G., Saegusa, S., Umehara, N.: Air-bearing surface chemical modification for low-friction head-disk interface. Microsyst. Technol. 13, 811–816 (2007)

  16. 16.

    Yoshimura, Y., Aono, T., Ikeda, Y., Endou, Y., Tokisue, H., Kouno, A.: Oil-repellent treatment of a flying slider in a hard disk drive. Surface Coat. Technol. 141, 202–207 (2001)

  17. 17.

    Cong, P., Kubo, T., Nanao, H., Minami, I., Mori, S.: Effect of self-assembled monolayers modified slider on head-disk tribology under volatile organic contamination. Tribol. Lett. 27, 137–143 (2007)

  18. 18.

    Ambekar, R.P., Bogy, D.B., Dai, Q., Marchon, B.: Critical clearance and lubricant instability at the head-disk interface of a disk drive. Appl. Phys. Lett. 92, 033104 (2008)

  19. 19.

    Izumisawa, S., Jhon, M.S.: Stability model for a lubricant film with a slider. IEEE Trans. Magn. 42, 2537–2539 (2006)

  20. 20.

    He, J.Z., Hopkins, J., Duan, S.L., Johnson, K.: Time dependence of head-media interference at low fly heights. IEEE Trans. Magn. 44, 3649–3652 (2008)

  21. 21.

    Boda, D., Henderson, D.: The effects of deviations from Lorentz–Berthelot rules on the properties of a simple mixture. Mol. Phys. 106, 2367–2370 (2008)

  22. 22.

    Ladd, A.J.C., Woodcock, L.V.: Triple-point coexistence properties of the Lennard-Jones system. Chem. Phys. Lett. 51, 155–159 (1977)

  23. 23.

    Hansen, J.P., Verlet, L.: Phase transitions of the Lennard-Jones system. Phys. Rev. 184, 151 (1969)

  24. 24.

    Haile, J.M.: Molecular Dynamics Simulation: Elementary Methods. Wiley Interscience, New York (1997)

  25. 25.

    Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Clarendon Press, Oxford (1987)

  26. 26.

    Jacob, N.I.: Intermolecular and Surface Forces. Academic Press, San Diego, CA (1992)

  27. 27.

    Christenson, H.K.: Capillary condensation due to van der Waals attraction in wet slits. Phys. Rev. Lett. 73, 1821–1824 (1994)

  28. 28.

    Beaglehole, D., Radlinska, E.Z., Ninham, B.W., Christenson, H.K.: Inadequacy of Lifshitz theory for thin liquid films. Phys. Rev. Lett. 66, 2084–2087 (1991)

  29. 29.

    Mate, C.M.: Tribology on the Small Scale: A Bottom Up Approach to Friction, Lubrication, and Wear. Oxford University Press, Oxford (2008)

  30. 30.

    Hua, W., Liu, B., Yu, S.K., Zhou, W.D.: Probability model for the intermolecular force with surface roughness considered. Tribol. Int. 40, 1047–1055 (2007)

  31. 31.

    Forcada, M.L.: Instability in a system of two interacting liquid films: formation of liquid bridges between solid surfaces. J. Chem. Phys. 98, 638 (1993)

Download references


The study described in this article is supported by a grant from Ministry of Education, Singapore (Project No. RG 13/09).

Author information

Correspondence to C. H. Wong.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wong, C.H., Li, B., Yu, S.K. et al. Molecular Dynamics Simulation of Lubricant Redistribution and Transfer at Near-Contact Head-Disk Interface. Tribol Lett 43, 89–99 (2011).

Download citation


  • Nanotribology
  • Magnetic data storage
  • Adhesion, Stiction
  • Hydrostatic lubrication
  • Surface roughness