Advertisement

Tribology Letters

, Volume 43, Issue 1, pp 1–15 | Cite as

Impact of Wire-EDM on Tribological Characteristics of ZrO2-based Composites in Dry Sliding Contact with WC–Co-Cemented Carbide

  • K. Bonny
  • Y. Perez Delgado
  • P. De Baets
  • J. Sukumaran
  • J. Vleugels
  • O. Malek
  • B. Lauwers
Original Paper

Abstract

The effect of surface conditions and secondary phase addition on the dry sliding friction and wear characteristics of five yttria-stabilized ZrO2-based composites with 40 vol% WC, TiCN or TiN was investigated using an ASTM G133 pin-on-flat sliding contact configuration. WC–6wt%Co-cemented carbide pins were used as mating material. The friction and wear level were higher for wire-EDMed ZrO2-based composites compared to their equivalent ground specimens. This finding could be correlated to flexural strength measurements, revealing strong discrepancy between wire-EDMed and ground surfaces. The most favorable tribological characteristics were encountered with ZrO2–WC composites compared to ZrO2–TiCN and ZrO2–TiN grades.

Keywords

ZrO2-based ceramic composite Wire-EDM Unlubricated friction Wear mechanism Flexural strength 

Notes

Acknowledgments

This investigation was supported by the Flemish Institute for the promotion of Innovation by Science and Technology in industry (IWT, Grant No. GBOU-IWT-010071-SPARK) and by the Fund for Scientific Research Flanders (FWO, Grant No. G.0539.08). Research was performed under a cooperative effort between Ghent University (UGent) and Catholic University of Leuven (K.U. Leuven). The authors are grateful to the participating research partners for all their assistance, facilities, scientific contributions, and stimulating collaboration. They also wish to extend their sincere gratitude to CERATIZIT for supplying the cemented carbide pins.

References

  1. 1.
    Kato, K., Adachi, K.: Wear of advanced ceramics. Wear 253(11–12), 1097–1104 (2002)CrossRefGoogle Scholar
  2. 2.
    Huang, C.Z., Zhang, L., He, L., Liu, H.L., Sun, J., Fang, B., Li, Z.Q., Ai, X.: A study on the development of a composite ceramic tool ZrO2/(W, Ti)C and its cutting performance. J. Mater. Process. Technol. 129(1–3), 349–353 (2002)CrossRefGoogle Scholar
  3. 3.
    Sergo, V., Lughi, V., Lucchini, E., Meriani, S., Pezzotti, G., Nishida, T., Muraki, N., Katagiri, G., Lo Casto, S.: The effect of wear on the tetragonal-to-monoclinic transformation and the residual stress distribution in zirconia-toughened alumina cutting tools. Wear 214(2), 264–270 (1998)CrossRefGoogle Scholar
  4. 4.
    Myint, M.H., Fuh, J.Y.H., Wong, Y.S., Lu, L., Chen, Z.D., Choy, C.M.: Evaluation of wear mechanisms of Y-TZP and tungsten carbide punches. J. Mater. Process. Technol. 140(1–3 spec), 460–464 (2003)CrossRefGoogle Scholar
  5. 5.
    Mandler Jr., W.F., Yonushonis, T.M.: Commercial applications for advanced ceramics in diesel engines. Ceram. Eng. Sci. Proc. 22(3), 3–10 (2001)CrossRefGoogle Scholar
  6. 6.
    Belmonte, M.: Advanced ceramic materials for high temperature applications. Adv. Eng. Mater. 8(8), 693–703 (2006)CrossRefGoogle Scholar
  7. 7.
    Marti, A.: Inert bioceramics (Al2O3, ZrO2) for medical application. Inj. Int. J. Care. Inj. 31(Suppl. 4), S-D 33–36 (2000)Google Scholar
  8. 8.
    Kosmac, T., Oblak, C., Jevnikar, P., Funduk, N., Marion, L.: Strength and reliability of surface treated Y-TZP dental ceramics. J. Biomed. Mater. Res. 53(4), 304–313 (2000)CrossRefGoogle Scholar
  9. 9.
    Morita, Y., Nakata, K., Ikeuchi, K.: Wear properties of zirconia/alumina combination for joint prostheses. Wear 254(1–2), 147–153 (2003)CrossRefGoogle Scholar
  10. 10.
    Willmann, G., Fruh, H.J., Pfaff, H.G.: Wear characteristics of sliding pairs of zirconia (Y-TZP) for hip endoprostheses. Biomaterials 17(22), 2157–2162 (1996)CrossRefGoogle Scholar
  11. 11.
    Nath, S., Sinha, N., Basu, B.: Microstructure, mechanical and tribological properties of microwave sintered calcia-doped zirconia for biomedical applications. Ceram. Int. 34(6), 1509–1520 (2008)CrossRefGoogle Scholar
  12. 12.
    Arin, M., Goller, G., Vleugels, J., Vanmeensel, K.: Production and characterization of ZrO2 ceramics and composites to be used for hip prosthesis. J. Mater. Sci. 43(5), 1599–1611 (2008)CrossRefGoogle Scholar
  13. 13.
    Pasaribu, H.R., Sloetjes, J.W., Schipper, D.J.: Friction reduction by adding copper oxide into alumina and zirconia ceramics. Wear 255(1), 699–707 (2003)CrossRefGoogle Scholar
  14. 14.
    Hsu, S.M., Shen, M.: Wear prediction of ceramics. Wear 256(9–10), 867–878 (2004)CrossRefGoogle Scholar
  15. 15.
    Lee Soo, W., Hsu, S.M., Shen, M.C.: Ceramic wear maps: zirconia. J. Am. Ceram. Soc. 76(8), 1937–1947 (1993)CrossRefGoogle Scholar
  16. 16.
    Terheci, M., Nanos, J., Giannakoudaris, H., Abanteriba, S.: Tribological behaviour of yttria-stabilised zirconia under dry sliding conditions when tested against itself and grey automotive cast iron. Wear 201(1–2), 26–37 (1996)CrossRefGoogle Scholar
  17. 17.
    Yang, C.-C.T., Wei, W.-C.J.: Effects of material properties and testing parameters on wear properties of fine-grain zirconia TZP. Wear 242(1), 97–104 (2000)CrossRefGoogle Scholar
  18. 18.
    Novak, S., Drazic, G., Kalin, M.: Structural changes in ZrO2 ceramics during sliding under various environments. Wear 259(1), 562–568 (2005)CrossRefGoogle Scholar
  19. 19.
    Bocanegra-Bernal, M.H., De La Torre, S.D.: Phase transitions in zirconium dioxide and related materials for high performance engineering ceramics. J. Mater. Sci. 37(23), 4947–4971 (2002)CrossRefGoogle Scholar
  20. 20.
    Hannink, R.H.J., Kelly, P.M., Muddle, B.C.: Transformation toughening in zirconia containing ceramics. J. Am. Ceram. Soc. 83(3), 461–487 (2000)CrossRefGoogle Scholar
  21. 21.
    Gupta, N., Mallik, P., Lewis, M.H., Basu, B.: Improvement of toughness of Y–ZrO2: role of dopant distribution. Key. Eng. Mater. 264–268(2), 817–820 (2004)CrossRefGoogle Scholar
  22. 22.
    He, Y.J., Winnubst, A.J.A., Schipper, D.J., Burggraaf, A.J., Verweij, H.: Effects of a second phase on the tribological properties of Al2O3 and ZrO2 ceramics. Wear 210(1–2), 178–187 (1997)CrossRefGoogle Scholar
  23. 23.
    Anné, G., Put, S., Vanmeensel, K., Jiang, D., Vleugels, J., Van der Biest, O.: Hard, tough and strong ZrO2–WC composites from nanosized powders. J. Eur. Ceram. Soc. 25(1), 55–63 (2005)CrossRefGoogle Scholar
  24. 24.
    Jiang, D., Van der Biest, O., Vleugels, J.: ZrO2–WC nanocomposites with superior properties. J. Eur. Ceram. Soc. 27(2–3), 1247–1251 (2007)CrossRefGoogle Scholar
  25. 25.
    Jiang, D., Salehi, S., Vanmeensel, K., Vleugels, J., Van der Biest, O.: Development and characterization of ZrO2–TiC0.5N0.5 nanocomposites. In: Proceedings of the 9th Conference & Exhibition of the European Ceramic Society, Portoroz, Slovenia, pp. 19–23 (2005)Google Scholar
  26. 26.
    Barbier, E., Thevenot, F.: Titanium carbonitride-zirconia composites: formation and characterization. J. Eur. Ceram. Soc. 8(5), 263–269 (1991)CrossRefGoogle Scholar
  27. 27.
    Salehi, S., Van der Biest, O., Vleugels, J.: Electrically conductive ZrO2–TiN composites. J. Eur. Ceram. Soc. 26(15), 3173–3179 (2006)CrossRefGoogle Scholar
  28. 28.
    Pitman, A., Huddleston, J.: Electrical discharge machining of ZrO2/TiN particulate composite. Br. Ceram. Trans. 99(2), 77–84 (2000)CrossRefGoogle Scholar
  29. 29.
    Zum Gahr, K.-H.: Wear by hard particles. Tribol. Int. 31(10), 587–596 (1998)CrossRefGoogle Scholar
  30. 30.
    Kozak, J., Rajurkar, K.P., Chandarana, N.: Machining of low electrical conductive materials by wire electrical discharge machining (WEDM). J. Mater. Process. Technol. 149(1–3), 266–271 (2004)CrossRefGoogle Scholar
  31. 31.
    Tuerley, I.P., Jawaid, A., Pashby, I.R.: Review: various methods of machining advanced ceramic materials. J. Mater. Process. Technol. 42(4), 377–390 (1994)CrossRefGoogle Scholar
  32. 32.
    Lauwers, B., Kruth, J.-P., Liu, W., Eeraerts, W., Schacht, B., Bleys, P.: Investigation of material removal mechanisms in EDM of composite ceramic materials. J. Mater. Process. Technol. 149(1–3), 347–352 (2004)CrossRefGoogle Scholar
  33. 33.
    Lauwers, B., Brans, K., Liu, W., Vleugels, J., Salehi, S., Vanmeensel, K.: Influence of the type and grain size of the electro-conductive phase on the Wire-EDM performance of ZrO2 ceramic composites. CIRP Ann. Manuf. Technol. 57(1), 191–194 (2008)CrossRefGoogle Scholar
  34. 34.
    Bonny, K., De Baets, P., Vleugels, J., Salehi, A., Van der Biest, O., Lauwers, B., Liu, W.: Influence of secondary electro-conductive phases on the electrical discharge machinability and frictional behavior of ZrO2-based ceramic composites. J. Mater. Process. Technol. 208(1–3), 423–430 (2008)CrossRefGoogle Scholar
  35. 35.
    Bonny, K., De Baets, P., Vleugels, J., Salehi, A., Van der Biest, O., Lauwers, B., Liu, W.: Influence of electrical discharge machining on tribological behavior of ZrO2–TiN composites. Wear 265(11–12), 1884–1892 (2009)Google Scholar
  36. 36.
    Bonny, K., De Baets, P., Vleugels, J., Van der Biest, O., Salehi, A., Liu, W., Lauwers, B.: Reciprocating sliding friction and wear behavior of electrical discharge machined zirconia-based composites against WC–Co cemented carbide. Int. J. Refract. Met. Hard. Mater. 27(2), 449–457 (2009)CrossRefGoogle Scholar
  37. 37.
    Bonny, K., De Baets, P., Ost, W., Perez, Y., Vleugels, J., Van der Biest, O., Liu, W., Lauwers, B.: Influence of secondary phases on the tribological response of electro-discharge machined Zirconia-based composites against WC–Co cemented carbide. Wear 267(12), 2157–2166 (2009)CrossRefGoogle Scholar
  38. 38.
    Anstis, G.R., Chantikul, P., Lawn, B.R., Marshall, D.B.A.: A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. J. Am. Ceram. Soc. 64(9), 533–538 (1981)CrossRefGoogle Scholar
  39. 39.
    Jianxin, D., Zeliang, D., Jun, Z., Jianfeng, L., Tongkun, C.: Unlubricated friction and wear behaviors of various alumina-based ceramic composites against cemented carbide. Ceram. Int. 32(5), 499–507 (2006)CrossRefGoogle Scholar
  40. 40.
    Fischer, E.T., Anderson, P.M., Jahanmir, S.: Influence of fracture toughness on the wear resistance of yttria-doped zirconium oxide. J. Am. Ceram. Soc. 72(2), 252–257 (1989)CrossRefGoogle Scholar
  41. 41.
    Asif, S.A.S., Muthu, D.V.S., Sood, A.K., Biswas, S.K.: Surface damage of yttria-tetragonal zirconia polycrystals and magnesia-partially-stabilized zirconia in single-point abrasion. J. Am. Ceram. Soc. 78(12), 3357–3362 (1995)CrossRefGoogle Scholar
  42. 42.
    Basu, B., Vitchev, R.G., Vleugels, J., Celis, J.P., Van Der Biest, O.: Influence of humidity on the fretting wear of self-mated tetragonal zirconia ceramics. Acta Mater. 48(10), 2461–2471 (2000)CrossRefGoogle Scholar
  43. 43.
    Ramulu, M., Paul, G., Patel, J.: EDM surface effects on the fatigue strength of a 15 vol% SiCp/Al metal matrix composite material. Compos. Struct. 54(1), 79–86 (2001)CrossRefGoogle Scholar
  44. 44.
    Lee, T., Deng, J.: Mechanical surface treatments of electro-discharge machined (EDMed) ceramic composite for improved strength and reliability. J. Am. Ceram. Soc. 22(4), 545–550 (2002)CrossRefGoogle Scholar
  45. 45.
    Hu, C.F., Zhou, Y.C., Bao, Y.W.: Material removal and surface damage in EDM of Ti3SiC2 ceramic. Ceram. Int. 34(3), 537–541 (2008)CrossRefGoogle Scholar
  46. 46.
    Fu, C.-T., Wu, J.-M., Liu, D.-M.: The effect of electrodischarge machining on the fracture strength and surface microstructure of an Al2O3–Cr3C2 composite. Mater. Sci. Eng. A 188(1–2), 91–96 (1994)Google Scholar
  47. 47.
    Liu, C.-C., Huang, J.-L.: Effect of the electrical discharge machining on strength and reliability of TiN/Si3N4 composites. Ceram. Int. 29(6), 679–687 (2003)CrossRefGoogle Scholar
  48. 48.
    Wang, Y., Hsu, S.M.: Wear and wear transition modeling of ceramics. Wear 195(1–2), 35–46 (1996)CrossRefGoogle Scholar
  49. 49.
    Chou, I.A., Chan, H.M., Harmer, M.P.: Machining-induced surface residual stress behavior in Al2O3–SiC nanocomposites. J. Am. Ceram. Soc. 79(9), 2403–2409 (1996)CrossRefGoogle Scholar
  50. 50.
    Wu, H.Z., Lawrence, C.W., Roberts, S.G., Derby, B.: The strength of Al2O3/SiC nanocomposites after grinding and annealing. Acta Mater. 46(11), 3839–3848 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • K. Bonny
    • 1
  • Y. Perez Delgado
    • 1
  • P. De Baets
    • 1
  • J. Sukumaran
    • 1
  • J. Vleugels
    • 2
  • O. Malek
    • 2
    • 3
  • B. Lauwers
    • 3
  1. 1.Department of Mechanical Construction and Production, Laboratory SoeteGhent University (UGent)GhentBelgium
  2. 2.Department of Metallurgy and Materials EngineeringCatholic University of Leuven (K.U. Leuven)LeuvenBelgium
  3. 3.Department of Mechanical EngineeringCatholic University of Leuven (K.U. Leuven)LeuvenBelgium

Personalised recommendations