Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The Roles of Statics and Dynamics in Determining Transitions Between Atomic Friction Regimes

Abstract

We introduce a model AFM tip/substrate system that includes full atomistic detail as well as system compliance to study the transitions between three regimes of atomic friction: smooth sliding, stick-single slip, and stick-multiple slip. We characterize these atomic friction regimes in terms of static and dynamic effects, and investigate how the slip modes affect the mean friction. Molecular statics calculations show that reduced-order model predictions of possible transitions between slip regimes are generally adequate for a fully atomistic system, even for complex reaction coordinates. However, molecular dynamics simulations demonstrate that, while static features of the system govern possible slip regimes, dynamic effects ultimately determine actual transitions between slip regimes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Dienwiebel, M., Verhoeven, G.S., Pradeep, N., Frenken, J.W.: Superlubricity of graphite. Phys. Rev. Lett. 92, 126101 (2004)

  2. 2.

    Socoliuc, A., Bennewitz, R., Gnecco, E., Meyer, E.: Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction. Phys. Rev. Lett. 92, 134301 (2004)

  3. 3.

    Krylov, S.Y., Jinesh, K.B., Valk, H., Dienwiebel, M., Frenken, J.W.M.: Thermally induced suppression of friction at the atomic scale. Phys. Rev. Lett. 71, 065101 (2005)

  4. 4.

    Socoliuc, A., Gnecco, E., Maier, S., Pfeiffer, O., Baratoff, A., Bennewitz, R., Meyer, E.: Atomic-scale control of friction by actuation of nanometer-sized contacts. Science 313, 207 (2006)

  5. 5.

    Mate, C.M., McClelland, G.M., Erlandsson, R., Chiang, S.: Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59, 1942–1945 (1987)

  6. 6.

    Zhong, W., Tománek, D.: First-principles theory of atomic-scale friction. Phys. Rev. Lett. 64, 3054–3057 (1990)

  7. 7.

    Medyanik, S.N., Liu, W.K., Sung, I.-H., Carpick, R.W.: Predictions and observations of multiple slip modes in atomic-scale friction. Phys. Rev. Lett. 97, 136106 (2006)

  8. 8.

    Perez, D., Dong, Y., Martini, A., Voter, A.F.: Rate theory description of atomic stick-slip friction. Phys. Rev. B 81, 245415 (2010)

  9. 9.

    Conley, W.G., Krousgrill, C.M., Raman, A.: Stick-slip motions in the friction force microscope: effects of tip compliance. Tribol. Lett. 29, 23–32 (2008)

  10. 10.

    Tshiprut, Z., Zelner, S., Urbakh, M.: Temperature-induced enhancement of nanoscale friction. Phys. Rev. Lett. 102, 136102 (2009)

  11. 11.

    Sang, Y., Dube, M., Grant, M.: Thermal effects on atomic friction. Phys. Rev. Lett. 87, 174301 (2001)

  12. 12.

    Gnecco, E., Bennewitz, R., Loppacher, C., Bammerli, M., Meyer, E., Guntherodt, H.-J.: Velocity dependence of atomic friction. Phys. Rev. Lett. 84, 1172–1174 (2000)

  13. 13.

    Riedo, E., Gnecco, E., Bennewitz, R., Meyer, E., Brune, H.: Interaction potential and hopping dynamics governing sliding friction. Phys. Rev. Lett. 91, 084502 (2003)

  14. 14.

    Shirmeisen, A., Jasen, L., Hölscher, H., Fuchs, H.: Temperature dependence of point contact friction on silicon. Appl. Phys. Lett. 88, 123108 (2006)

  15. 15.

    Zhao, X., Phillpot, S.R., Sawyer, W., Sinnott, S.B., Perry, S.S.: Temperature dependence of point contact friction on silicon. Phys. Rev. Lett. 102, 186102 (2008)

  16. 16.

    Roth, R., Glatzel, T., Steiner, P., Gnecco, E., Baratoff, A., Meyer, E.: Multiple slips in atomic-scale friction: an indicator for the lateral contact damping. Tribol. Lett. 39, 63–69 (2010)

  17. 17.

    Nakamura, J., Wakunami, S., Natori, A.: Double-slip mechanism in atomic-scale friction: Tomlinson model at finite temperatures. Phys. Rev. B 72, 235415 (2005)

  18. 18.

    Voter, A.F.: Embedded atom method potentials for seven FCC metals: Ni, Pd, Pt, Cu, Ag, Au, and Al. Los Alamos Unclassifed Technical Report LA-UR-93-3901 (1993)

  19. 19.

    Martini, A., Dong, Y., Perez, D., Voter, A.F.: Low-speed atomistic simulation of stick slip friction using parallel replica dynamics. Tribol. Lett. 36, 63–68 (2009)

  20. 20.

    Voter, A.F.: Parallel replica method for dynamics of infrequent events. Phys. Rev. B 57, 13985–13988 (1998)

  21. 21.

    Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45, 503 (1989)

  22. 22.

    E, W., Ren, W., Vanden-Eijnden, E.: String method for the study of rare events. Phys. Rev. B 66, 052301 (2002)

  23. 23.

    Krylov, S., Dijksman, J.A., van Loo, W.A., Frenken, J.M.: Stick-slip motion in spite of a slippery contact: do we get what we see in atomic friction?. Phys. Rev. Lett. 97, 166103 (2006)

  24. 24.

    Krylov, S.Y., Frenken, J.W.M.: Thermal contact delocalization in atomic scale friction: a multitude of friction regimes. New. J. Phys. 9, 398 (2007)

  25. 25.

    Bennewitz, R., Gyalog, T., Gussisberg, M., Meyer, E., Guntherodt, H.-J.: Atomic-scale stick-slip processes on Cu(111). Phys. Rev. B 60, 301–304 (1999)

  26. 26.

    Carpick, R., Ogletree, D.F., Salmeron, M.: Lateral stiffness: a new nanomechanical measurement for the determination of shear strengths with friction force microscopy. Appl. Phys. Lett. 70, 1 (1997)

  27. 27.

    Lantz, M.A., Oshea, S.J., Hoole, A.C.F., Welland, M.E.: Lateral stiffness of the tip and tip-sample contact in frictional force microcopy. Appl. Phys. Lett. 70, 8 (1997)

  28. 28.

    Johnson, K.L., Woodhouse, J.: Stick-slip motion in the atomic force microscope. Tribol. Lett. 5, 155 (1998)

  29. 29.

    Kim, W.K., Falk, M.L.: Atomic-scale simulations on the sliding of incommensurate surfaces: the breakdown of superlubricity. Phys. Rev. B 80, 235428 (2009)

  30. 30.

    Hirano, M., Shinjo, K.: Atomistic locking and friction. Phys. Rev. B 41, 11837 (1990)

  31. 31.

    Sørensen, M.R., Jacobsen, K.W., Stoltze, P.: Simulations of atomic-scale sliding friction. Phys. Rev. B 53, 2101–2113 (1996)

  32. 32.

    Maier, S., Sang, Y., Filleter, T., Grant, M., Bennewitz, R., Gnecco, E., Meyer, E.: Fluctuations and jump dynamics in atomic friction experiments. Phys. Rev. B 72, 245418 (2005)

  33. 33.

    Voter, A.F., Doll, J.D.: Dynamical corrections to transition state theory for multistate systems: surface self-diffusion in the rare-event regime. J. Chem. Phys. 82, 80–92 (1985)

  34. 34.

    Barel, I., Urbakh, M., Jansen, L., Schirmeisen, A.: Multibond dynamics of nanoscale friction: the role of temperature. Phys. Rev. Lett. 104, 066104 (2010)

  35. 35.

    Gosvami, N.N., Filleter, T., Egberts, P., Bennewitz, R.: Microscopic Friction Studies on Metal Surfaces. Tribol. Lett 39, 19–24 (2010)

  36. 36.

    Enachescu, M., Carpick, R.W., Ogletree, D.F., Salmeron, M.: The role of contaminants in the variation of adhesion, friction, and electrical conduction properties of carbide-coated scanning probe tips and Pt(111) in ultrahigh vacuum. J. Appl. Phys. 95, 7694 (2004)

Download references

Acknowledgments

We are grateful for the contributions of Jianguo Wu, Dr. Qunyang Li and Dr. Robert Carpick and to the National Science Foundation for its support via award CMMI- 0758604. Work at Los Alamos National Laboratory (LANL) was supported by the United States Department of Energy (U.S. DOE) Office of Basic Energy Sciences, Materials Sciences and Engineering Division, and by the LANL Laboratory Directed Research and Development Program. LANL is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. DOE under Contract No. DE-AC52-06NA25396.

Author information

Correspondence to Ashlie Martini.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dong, Y., Perez, D., Voter, A.F. et al. The Roles of Statics and Dynamics in Determining Transitions Between Atomic Friction Regimes. Tribol Lett 42, 99–107 (2011). https://doi.org/10.1007/s11249-011-9750-5

Download citation

Keywords

  • Nanotribology
  • Stick-slip
  • Dynamic modeling
  • Friction mechanisms