Tribology Letters

, Volume 41, Issue 2, pp 319–323 | Cite as

Tribometer for In Situ Scanning Electron Microscopy of Microstructured Contacts

Original Paper

Abstract

Here, we report on a special tribometer built to operate inside an environmental scanning electron microscope enabling charge-free imaging of non-conductive and/or hydrated materials. The device is intended to be used for simultaneous testing and in situ visual inspection of biological and biomimetic patterned surfaces during contact formation, pulling-off, peeling, and shearing modeling the behavior of biological microstructured attachment systems in nature. To demonstrate its performance, a simple array of hexagonal elastomer micropillars is tested. The results obtained show that direct link between precise data on the contact forces and images of the contact elements deformed by these forces indeed allows getting an insight into how contact surface patterns function when in contact.

Keywords

Biomimetic tribology Adhesion Friction test methods Contact visualization 

References

  1. 1.
    Creton, C., Gorb, S.: Sticky feet: from animals to materials. MRS Bull. 32, 466–472 (2007)Google Scholar
  2. 2.
    Scherge, M., Gorb, S.: Biological Micro- and Nanotribology: Nature’s Solutions. Springer, Berlin (2001)Google Scholar
  3. 3.
    Gorb, S.N.: Functional surfaces in biology: mechanisms and applications. In: Bar-Cohen, Y. (ed.) Biomimetics: Biologically Inspired Technologies, pp. 381–397. CRC Press, Boca Raton (2006)Google Scholar
  4. 4.
    Parness, A., Soto, D., Esparza, N., Gravish, N., Wilkinson, M., Autumn, K., Cutkosky, M.: A microfabricated wedge-shaped adhesive array displaying gecko-like dynamic adhesion, directionality and long lifetime. J. R. Soc. Interface 6, 1223–1232 (2009)CrossRefGoogle Scholar
  5. 5.
    Autumn, K., Liang, Y.A., Hsieh, S.T., Zesch, W., Chan, W.P., Kenny, T.W., Fearing, R., Full, R.J.: Adhesive force of a single gecko foot-hair. Nature 405, 681–685 (2000)CrossRefGoogle Scholar
  6. 6.
    Hui, C.Y., Glassmaker, N.J., Tang, T., Jagota, A.: Design of biomimetic fibrillar interfaces: 2. Mechanics of enhanced adhesion. J. R. Soc. Interface 1, 35–48 (2004)CrossRefGoogle Scholar
  7. 7.
    Jiao, Y., Gorb, S., Scherge, M.: Adhesion measured on the attachment pads of Tettigonia viridissima (Orthoptera Insecta). J. Exp. Biol. 203, 1887–1895 (2000)Google Scholar
  8. 8.
    Greiner, C., del Campo, A., Arzt, E.: Adhesion of bioinspired micropatterned surfaces: effects of pillar radius, aspect ratio, and preload. Langmuir 23, 3495–3502 (2007)CrossRefGoogle Scholar
  9. 9.
    Federle, W., Barnes, W.J.P., Baumgartner, W., Drechsler, P., Smith, J.M.: Wet but not slippery: boundary friction in tree frog adhesive toe pads. J. R. Soc. Interface 3, 689–697 (2006)CrossRefGoogle Scholar
  10. 10.
    Varenberg, M., Gorb, S.: Shearing of fibrillar adhesive microstructure: friction and shear-related changes in pull-off force. J. R. Soc. Interface 4, 721–725 (2007)CrossRefGoogle Scholar
  11. 11.
    Crosby, A.J., Hageman, M., Duncan, A.: Controlling polymer adhesion with “pancakes”. Langmuir 21, 11738–11743 (2005)CrossRefGoogle Scholar
  12. 12.
    Varenberg, M., Gorb, S.: Close-up of mushroom-shaped fibrillar adhesive microstructure: contact element behaviour. J. R. Soc. Interface 5, 785–789 (2008)CrossRefGoogle Scholar
  13. 13.
    Murphy, M.P., Aksak, B., Sitti, M.: Gecko-inspired directional and controllable adhesion. Small 5, 170–175 (2009)CrossRefGoogle Scholar
  14. 14.
    Gane, N., Bowden, F.P.: Microdeformation of solids. J. Appl. Phys. 39, 1432–1435 (1968)CrossRefGoogle Scholar
  15. 15.
    Guo, S.Y., Li, J., Mao, D.S., Xu, M.H., Mao, Z.Y.: The friction-wear behavior of Al2O3–TiC–Co advanced ceramic during in situ SEM. Wear 203–204, 319–324 (1997)CrossRefGoogle Scholar
  16. 16.
    Orso, S., Wegst, U.G.K., Eberl, C., Arzt, E.: Micrometer-scale tensile testing of biological attachment devices. Adv. Mater. 18, 874–877 (2006)CrossRefGoogle Scholar
  17. 17.
    Eberl, C., Saif, T.: In situ mechanical testing of biological and inorganic materials at the micro- and nanoscales. MRS Bull. 35, 347–350 (2010)Google Scholar
  18. 18.
    Varenberg, M., Peressadko, A., Gorb, S., Arzt, E., Mrotzek, S.: Advanced testing of adhesion and friction with a microtribometer. Rev. Sci. Instrum. 77, 066105 (2006)Google Scholar
  19. 19.
    Glassmaker, N.J., Jagota, A., Hui, C.-Y., Noderer, W.L., Chaudhury, M.K.: Biologically inspired crack trapping for enhanced adhesion. Proc. Natl. Acad. Sci. USA 104, 10786–10791 (2007)CrossRefGoogle Scholar
  20. 20.
    Varenberg, M., Gorb, S.: Hexagonal surface micropattern for dry and wet friction. Adv. Mater. 21, 483–486 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringTechnion-IITHaifaIsrael

Personalised recommendations