Tribology Letters

, Volume 39, Issue 3, pp 329–348 | Cite as

Defining Contact at the Atomic Scale

Original Paper


Contact area plays a central role in continuum theories of friction and adhesion, and there is growing interest in calculating it with atomic resolution. Molecular dynamics simulations are used to study definitions of contact area based on instantaneous and time-averaged forces or separations between atoms. Flat and spherical surfaces with different atomic geometries, adhesion, and temperatures are examined. In continuum theory, the fraction of two flat surfaces that is in contact rises sharply from zero to unity when a load is applied. This simple behavior is surprisingly difficult to reproduce with atomic scale definitions of contact. At typical temperatures, nonadhesive surfaces are held apart by a small fraction of atoms with large thermal fluctuations until the normal pressure is comparable to the ideal hardness. The contact area associated with atoms interacting at any instant rises linearly with load. Time averaging produces a monotonic increase in area with time interval that only converges to the sharp rise in continuum models for the special case of identical crystal surfaces. Except in this special case, the time-averaged contact area between adhesive surfaces also rises to full contact over a range of pressures comparable to the ideal hardness. Similar complications are encountered in defining contact areas for spherical tips. The fraction of atoms in contact rises linearly with local pressure, and the contact area based on time-averaged forces does not fit continuum theory. A simple harmonic mean-field theory provides a quantitative description of the simulation results and explains why the instantaneous forces on atoms are observed to have a universal exponential form. The results imply that continuum models of contact only apply to forces averaged over areas containing many atoms.


Nanotribology Contact mechanics 



This material is based upon study supported by the National Science Foundation under Grant No. DMR-0454947 and the Air Force Office of Scientific Research under Grant No. FA9550-0910232.


  1. 1.
    Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. A 295, 300–319 (1966)CrossRefADSGoogle Scholar
  2. 2.
    Johnson, K.L.: Contact Mechanics. Cambridge, New York (1985)MATHGoogle Scholar
  3. 3.
    Persson, B.N.J.: Elastoplastic contact between randomly rough surfaces. Phys. Rev. Lett. 87, 116101 (2001)CrossRefADSPubMedGoogle Scholar
  4. 4.
    Hyun, S., Pei, L., Molinari, J.F., Robbins, M.O.: Finite-element analysis of contact between elastic self-affine surfaces. Phys. Rev. E 70, 026117 (2004)CrossRefADSGoogle Scholar
  5. 5.
    Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids. Clarendon Press, Oxford (1986)Google Scholar
  6. 6.
    Gao, Y.F., Bower, A.F.: Elastic-plastic contact of a rough surface with weierstrass profile. Proc. R. Soc. A 462, 319–348 (2005)CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    Pei, L., Hyun, S., Molinari, J.F., Robbins, M.O.: Finite element modeling of elasto-plastic contact between rough surfaces. J. Mech. Phys. Sol. 53, 2385–2409 (2005)MATHCrossRefADSGoogle Scholar
  8. 8.
    Carpick, R.W., Salmeron, M.: Scratching the surface: Fundamental investigations of tribology with atomic force microscopy. Chem. Rev. 97, 1163–1194 (1997)CrossRefPubMedGoogle Scholar
  9. 9.
    Carpick, R.W., Ogletree, D.F., Salmeron, M.: Lateral stiffness: A new nanomechanical measurement for the determination of shear strengths with friction force microscopy. Appl. Phys. Lett. 70, 1548–1550 (1997)CrossRefADSGoogle Scholar
  10. 10.
    Enachescu, M., van den Oetelaar, R.J.A., Carpick, R.W., Ogletree, D.F., Flipse, C.J.F., Salmeron, M.: An afm study of an ideally hard contact: The diamond(111)/tungsten carbide interface. Phys. Rev. Lett. 81, 1877–1880 (1998)CrossRefADSGoogle Scholar
  11. 11.
    Carpick, R.W., Ogletree, D.F., Salmeron, M.: A general equation for fitting single asperity contact area and friction measurements. J. Colloid Interface Sci. 211, 395–400 (1999)CrossRefPubMedGoogle Scholar
  12. 12.
    Luan, B.Q., Robbins, M.O.: The breakdown of continuum models for mechanical contacts. Nature 435, 929–932 (2005)CrossRefADSPubMedGoogle Scholar
  13. 13.
    Luan, B.Q.: Simulations of contact and friction: Connecting atomic and continuum descriptions. Ph.D. thesis, Johns Hopkins University, Baltimore (2006)Google Scholar
  14. 14.
    Mo, Y., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457, 1116–1119 (2009)CrossRefADSPubMedGoogle Scholar
  15. 15.
    Mo, Y., Szlufarska, I.: Roughness picture of friction in dry nanoscale contacts. Phys. Rev. B 81(3), 035405 (2010)CrossRefADSGoogle Scholar
  16. 16.
    Knippenberg, M.T., Mikulski, P.T., Dunlap, B.I., Harrison, J.A.: Atomic contributions to friction and load for tip–self-assembled monolayers interactions. Phys. Rev. B 78(23), 235409 (2008)CrossRefADSGoogle Scholar
  17. 17.
    Harrison, J.A., Stuart, S.J., Brenner, D.W.: Atomic-scale simulation of tribological and related phenomena. In: Bhushan, B. (ed.) Handbook of Micro/Nanotribology, pp. 525–594. CRC Press, Boca Raton (1999)Google Scholar
  18. 18.
    Robbins, M.O., Müser, M.H.: Computer simulations of friction, lubrication and wear. In: Bhushan, B. (ed.) Handbook of Modern Tribology, pp. 717–765. CRC Press, Boca Raton (2000) (cond-mat/0001056)Google Scholar
  19. 19.
    Brukman, M.J., Gao, G., Nemanich, R.J., Harrison, J.A.: Temperature dependence of single-asperity diamond-diamond friction elucidated using afm and md simulations. J. Phys. Chem. C 112, 9358 (2008)CrossRefGoogle Scholar
  20. 20.
    Pearson, J.D., Gao, G., Zikry, M.A., Harrison, J.A.: Nanoindentation of model diamond nanocomposites: Hierarchical molecular dynamics and finite-element simulations. Comp. Mat. Sci. 47, 1 (2009)CrossRefGoogle Scholar
  21. 21.
    Chandross, M., Lorenz, C.D., Stevens, M.J., Grest, G.S.: Simulations of nanotribology with realistic probe tip models. Langmuir 24, 1240–1246 (2008)CrossRefPubMedGoogle Scholar
  22. 22.
    Yang, C., Persson, B.N.J.: Molecular dynamics study of contact mechanics: contact area and interfacial separation from small to full contact. Phys. Rev. Lett. 100, 024303 (2008)CrossRefADSPubMedGoogle Scholar
  23. 23.
    Yang, C., Persson, B.N.J.: Contact mechanics: contact area and interfacial separation from small contact to full contact. J. Phys. Condens. Matter 20, 215214 (2008)CrossRefADSGoogle Scholar
  24. 24.
    Luan, B.Q., Robbins, M.O.: Hybrid atomistic/continuum study of contact and friction between rough solids. Tribol. Lett. 36, 1–16 (2009)CrossRefGoogle Scholar
  25. 25.
    Cheng, S., Luan, B.Q., Robbins, M.O.: Contact and friction of nanoasperities: effects of adsorbed monolayers. Phys. Rev. E 81, 016102 (2010)CrossRefADSGoogle Scholar
  26. 26.
    Burnham, N.A., Colton, R.J., Pollock, H.M.: Interpretation issues in force microscopy. J. Vac. Sci. Technol. A 9, 2548–2556 (1991)CrossRefADSGoogle Scholar
  27. 27.
    Schwarz, U.D.: A generalized analytical model for the elastic deformation of an adhesive contact between a sphere and a flat surface. J. Colloid Interface Sci. 261, 99–106 (2003)CrossRefPubMedGoogle Scholar
  28. 28.
    Luan, B.Q., Hyun, S., Robbins, M.O., Bernstein, N.: Multiscale modeling of two dimensional rough surface contacts. In: Wahl, K.J., Huber, N., Mann, A.B., Bahr, D.F., Cheng, Y.T. (eds.) Fundamentals of Nanoindentation and Nanotribology, vol 841, pp. R74. Materials Research Society, Warrendale (2005)Google Scholar
  29. 29.
    Luan, B.Q., Hyun, S., Molinari, J.F., Bernstein, N., Robbins, M.O.: Multiscale modeling of two-dimensional contacts. Phys. Rev. E 74, 046710 (2006)CrossRefADSGoogle Scholar
  30. 30.
    Campañá, C., Müser, M.H., Robbins, M.O.: Elastic contact between self-affine surfaces: Comparison of numerical stress and contact correlation functions with analytic predictions. J. Phys. Condens. Matter 20, 354013 (2008)CrossRefGoogle Scholar
  31. 31.
    Hyun, S., Robbins, M.O.: Elastic contact between rough surfaces: effect of roughness at large and small wavelengths. Tribol. Int. 40, 1413–1422 (2007)CrossRefGoogle Scholar
  32. 32.
    Persson, B.N.J.: On the elastic energy and stress correlation in the contact between elastic solids with randomly rough surfaces. J. Phys. Condens. Matter 20, 312001 (2008)CrossRefADSGoogle Scholar
  33. 33.
    Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Clarendon Press, Oxford (1987)MATHGoogle Scholar
  34. 34.
    Sergici, A.O., Adams, G.G., Müftü, S.: Adhesion in the contact of a spherical indenter with a layered elastic half-space. J. Mech. Phys. Sol. 54, 1843–1861 (2006)MATHCrossRefADSGoogle Scholar
  35. 35.
    Gao, G.T., Cannara, R.J., Carpick, R.W., Harrison, J.A.: Atomic-scale friction on diamond: a comparison of different sliding directions on (001) and (111) surfaces using md and afm. Langmuir 23(10), 5394–5405 (2007)CrossRefPubMedGoogle Scholar
  36. 36.
    D. Dowson, History of Tribology. Longman, New York (1979)Google Scholar
  37. 37.
    Israelachvili, J.N.: Intermolecular and Surface Forces, 2nd edn. Academic Press, London (1991)Google Scholar
  38. 38.
    Campañá, C., Müser, M.H.: Contact mechanics of real vs. randomly rough surfaces: a green’s function molecular dynamics study. Europhys. Lett. 77, 38005 (2007)CrossRefADSGoogle Scholar
  39. 39.
    Dieterich, J.H., Kilgore, B.D.: Imaging surface contacts: power law contact distributions and contact stresses in quartz, calcite, glass and acrylic plastic. Tectonophysics 256, 219–239 (1996)CrossRefADSGoogle Scholar
  40. 40.
    Maugis, D.: Adhesion of spheres: the JKR-DMT transition using a Dugdale model. J. Colloid Interface Sci. 150, 243–269 (1992)CrossRefGoogle Scholar
  41. 41.
    Maugis, D.: In: Grunze, M., Kreuzer, H.J. (eds.) Adhesion and Friction, vol. 17, pp. 303. Springer, Berlin (1990)Google Scholar
  42. 42.
    Tabor, D.: Surface forces and surface interactions. J. Colloid Interface Sci. 58, 2–13 (1977)CrossRefGoogle Scholar
  43. 43.
    Stevens, M.J., Robbins, M.O.: Melting of Yukawa systems: a test of phenomenological melting criteria. J. Chem. Phys. 98, 2319–2324 (1993)Google Scholar
  44. 44.
    Krim J., Palasantzas, G.: Experimental observation of self-affine scaling and kinetic roughening at sub-micron lengthscales. Int. J. Mod. Phys. B 9, 599–632 (1995)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Physics and AstronomyJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations