Tribology Letters

, Volume 41, Issue 1, pp 33–40

Improved Substrate Protection and Self-Healing of Boundary Lubrication Film Consisting of Polydimethylsiloxane with Cationic Side Groups

Original Paper

Abstract

The substrate protection and self-healing capability of a cationic polymer lubricant (CPL) on a silicon oxide surface were tested with a pin-on-disc tribometer and atomic force microscopy (AFM). CPL was made of low molecular weight polydimethylsiloxane (PDMS) containing covalently attached quaternary ammonium cations and iodide counter-anions. CPL was spin-coated on the silicon oxide surface to form a 3–4 nm thick bound-and-mobile lubricant layer. The CPL film capable of binding to the SiO2 surface through ionic interactions is superior in substrate protection than the neutral PDMS film which cannot form the bound layer. The mobile component in the CPL film readily flows into the lubricant-depleted sliding contact region from the surrounding film. The self-healing capability of CPL via lateral flow is slightly enhanced in humid environments due to water uptake in the film. The 3–4 nm thick CPL film on silicon oxide takes 30–40 s to flow into a ~50 μm wide track, which corresponds to an apparent spreading rate of 2–3 × 10−11 m2/s.

Keywords

Boundary lubrication film Self-healing PDMS 

References

  1. 1.
    Kim, S.H., Asay, D.B., Dugger, M.T.: Nanotribology and MEMS. Nano Today 2, 22–29 (2007)CrossRefGoogle Scholar
  2. 2.
    Komvopoulos, K.: Surface engineering and microtribology for microelectromechanical systems. Wear 200, 305–327 (1996)CrossRefGoogle Scholar
  3. 3.
    Asay, D.B., Dugger, M.T., Kim, S.H.: In situ vapor-phase lubrication of MEMS. Tribol. Lett. 29, 67–74 (2008)CrossRefGoogle Scholar
  4. 4.
    Asay, D.B., Dugger, M.T., Ohlhausen, J.A., Kim, S.H.: Macro- to nanoscale wear prevention via molecular adsorption. Langmuir 24, 155–159 (2008)CrossRefGoogle Scholar
  5. 5.
    Strawhecker, K., Asay, D.B., McKinney, J., Kim, S.H.: Reduction of adhesion and friction of silicon oxide surface in the presence of n-propanol vapor in the gas phase. Tribol. Lett. 19, 17–21 (2005)CrossRefGoogle Scholar
  6. 6.
    Barnette, A.L., Asay, D.B., Kim, D., Guyer, B.D., Lim, H., Janik, M.J., Kim, S.H.: Experimental and density functional theory study of the tribochemical wear behavior of SiO2 in humid and alcohol vapor environments. Langmuir 25, 13052–13061 (2009)CrossRefGoogle Scholar
  7. 7.
    Ashurst, W.R., Yau, C., Carraro, C., Maboudian, R., Dugger, M.T.: Dichlorodimethylsilane as an anti-stiction monolayer for MEMS: a comparison to the octadecyltrichlosilane self-assembled monolayer. J. Microelectromech. Syst. 10, 41–49 (2001)CrossRefGoogle Scholar
  8. 8.
    Jun, Y., Zhu, X.Y.: Alkoxyl monolayers as anti-stiction coatings in Si-based MEMS devices. J. Adhes. Sci. Technol. 17, 593–601 (2003)CrossRefGoogle Scholar
  9. 9.
    Linford, M.R., Fenter, P., Eisenberger, P.M., Chidsey, C.E.D.: Alkyl monolayers on silicon prepared from 1-alkenes and hydrogen-terminated silicon. J. Am. Chem. Soc. 117, 3145–3155 (1995)CrossRefGoogle Scholar
  10. 10.
    Maboudian, R., Ashurst, W.R., Carraro, C.: Self-assembled monolayers as anti-stiction coatings for MEMS: characteristics and recent developments. Sens. Actuators 82, 219–223 (2000)CrossRefGoogle Scholar
  11. 11.
    Tsukruk, V.V., Bliznyuk, V.N.: Adhesive and friction forces between chemically modified silicon and silicon nitride surfaces. Langmuir 14, 446–455 (1998)CrossRefGoogle Scholar
  12. 12.
    Gu, Q.L., Cheng, X.H.: Tribological behaviors of self-assembled 3-aminopropyltriethoxysilane films on silicon. Curr. Appl. Phys. 8, 583–588 (2008)CrossRefGoogle Scholar
  13. 13.
    Wang, R.W., Baran, G., Wunder, S.L.: Packing and thermal stability of polyoctadecylsiloxane compared with octadecylsilane monolayers. Langmuir 16, 6298–6305 (2000)CrossRefGoogle Scholar
  14. 14.
    Singh, R.A., Kim, J., Yang, S.W., Oh, J.E., Yoon, E.S.: Tribological properties of trichlorosilane-based one- and two-component self-assembled monolayers. Wear 265, 42–48 (2008)CrossRefGoogle Scholar
  15. 15.
    Choi, J.H., Kawaguchi, M., Kato, T.: Nanoscale lubricant with strongly bonded phase and mobile phase. Tribol. Lett. 15, 353–358 (2003)CrossRefGoogle Scholar
  16. 16.
    Eapen, K.C., Patton, S.T., Smallwood, S.A., Phillips, B.S., Zabinski, J.S.: MEMS lubricants based on bound and mobile phases of hydrocarbon compounds: film deposition and performance evaluation. J. Microelectromech. Syst. 14, 954–960 (2005)CrossRefGoogle Scholar
  17. 17.
    Eapen, K.C., Patton, S.T., Zabinski, J.S.: Lubrication of microelectromechanical systems (MEMS) using bound and mobile phases of Fomblin Zdol (R). Tribol. Lett. 12, 35–41 (2002)CrossRefGoogle Scholar
  18. 18.
    Eapen, K.C., Smallwood, S.A., Zabinski, J.S.: Lubrication of MEMS under vacuum. Surf. Coat. Technol. 201, 2960–2969 (2006)CrossRefGoogle Scholar
  19. 19.
    Eapen, K.C., Patton, S.T., Smallwood, S.A., Nainaparampil, J.J., Zabinski, J.S.: Aging of a fluorinated lubricant on bare and DLC-coated silicon-based MEMS. Surf. Coat. Technol. 197, 270–277 (2005)CrossRefGoogle Scholar
  20. 20.
    Smallwood, S.A., Eapen, K.C., Patton, S.T., Zabinski, J.S.: Performance results of MEMS coated with a conformal DLC. Wear 260, 1179–1189 (2006)CrossRefGoogle Scholar
  21. 21.
    Ma, X., Gui, J., Smoliar, L., Grannen, K., Marchon, B., Jhon, M.S., Bauer, C.L.: Spreading of perfluoropolyalkylether films on amorphous carbon surfaces. J. Chem. Phys. 110, 3129–3137 (1999)CrossRefGoogle Scholar
  22. 22.
    Hsiao, E., Kim, D., Kim, S.H.: Effects of ionic side groups attached to polydimethylsiloxanes on lubrication of silicon oxide surfaces. Langmuir 25, 9814–9823 (2009)CrossRefGoogle Scholar
  23. 23.
    Grierson, D.S., Flater, E.E., Carpick, R.W.: Accounting for the JKR-DMT transition in adhesion and friction measurements with atomic force microscopy. J. Adhes. Sci. Technol. 19, 291–311 (2005)CrossRefGoogle Scholar
  24. 24.
    Schmale, D.T., Bourcier, R.J.: SAND87-0742. Sandia National Labs (1987)Google Scholar
  25. 25.
    Bowles, A.P., Hsia, Y.T., Jones, P.M., Schneider, J.W., White, L.R.: Quasi-equilibrium AFM measurement of disjoining pressure in lubricant nano-films I: Fomblin Z03 on silica. Langmuir 22, 11436–11446 (2006)CrossRefGoogle Scholar
  26. 26.
    Mate, C.M., Lorenz, M.R., Novotny, V.J.: Atomic force microscopy of polymeric liquid-films. J. Chem. Phys. 90, 7550–7555 (1989)CrossRefGoogle Scholar
  27. 27.
    Hu, J., Xiao, X.D., Salmeron, M.: Scanning polarization force microscopy—a technique for imaging liquids and weakly adsorbed layers. Appl. Phys. Lett. 67, 476–478 (1995)CrossRefGoogle Scholar
  28. 28.
    Asay, D.B., Hsiao, E., Kim, S.H.: Corrected direct force balance method for atomic force microscopy lateral force calibration. Rev. Sci. Instrum. 80, 066101–066103 (2009)CrossRefGoogle Scholar
  29. 29.
    Sader, J.E., Chon, J.W.M., Mulvaney, P.: Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 70, 3967–3969 (1999)CrossRefGoogle Scholar
  30. 30.
    Zanoria, E.S., Danyluk, S., McNallan, M.J.: Formation of cylindrical sliding-wear debris on silicon in humid conditions and elevated-temperatures. Tribol. Trans. 38, 721–727 (1995)CrossRefGoogle Scholar
  31. 31.
    Fischer, T.E., Zhu, Z., Kim, H., Shin, D.S.: Genesis and role of wear debris in sliding wear of ceramics. Wear 245, 53–60 (2000)CrossRefGoogle Scholar
  32. 32.
    Liu, W.M., Ye, C.F., Gong, Q.Y., Wang, H.Z., Wang, P.: Tribological performance of room-temperature ionic liquids as lubricant. Tribol. Lett. 13, 81–85 (2002)CrossRefGoogle Scholar
  33. 33.
    Xia, Y.Q., Sasaki, S., Murakami, T., Nakano, M., Shi, L., Wang, H.Z.: Ionic liquid lubrication of electrodeposited nickel-Si3N4 composite coatings. Wear 262, 765–771 (2007)CrossRefGoogle Scholar
  34. 34.
    Waltman, R.J., Khurshudov, A., Tyndall, G.W.: Autophobic dewetting of perfluoropolyether films on amorphous-nitrogenated carbon surfaces. Tribol. Lett. 12, 163–169 (2002)CrossRefGoogle Scholar
  35. 35.
    Crank, J.: The Mathematics of Diffusion, 2nd ed., pp. 1–414. Clarendon Press, Oxford (1975)Google Scholar
  36. 36.
    Asay, D.B., Barnette, A.L., Kim, S.H.: Effects of surface chemistry on structure and thermodynamics of water layers at solid–vapor interfaces. J. Phys. Chem. C 113, 2128–2133 (2009)CrossRefGoogle Scholar
  37. 37.
    Lane, J.M.D., Chandross, M., Lorenz, C.D., Stevens, M.J., Grest, G.S.: Water penetration of damaged self-assembled monolayers. Langmuir 24, 5734–5739 (2008)CrossRefGoogle Scholar
  38. 38.
    Foster, M., D’Agostino, M., Passno, D.: Water on MgO(100)—an infrared study at ambient temperatures. Surf. Sci. 590, 31–41 (2005)CrossRefGoogle Scholar
  39. 39.
    Chumaevskii, N.A., Rodnikova, M.N.: Some peculiarities of liquid water structure. J. Mol. Liq. 106, 167–177 (2003)CrossRefGoogle Scholar
  40. 40.
    Du, Q., Superfine, R., Freysz, E., Shen, Y.R.: Vibrational spectroscopy of water at the vapor water interface. Phys. Rev. Lett. 70, 2313–2316 (1993)CrossRefGoogle Scholar
  41. 41.
    Ewing, G.E.: Thin film water. J. Phys. Chem. B 108, 15953–15961 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Chemical EngineeringPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations