Tribology Letters

, Volume 39, Issue 3, pp 321–327 | Cite as

Atomic Friction Investigations on Ordered Superstructures

  • Pascal Steiner
  • Enrico Gnecco
  • Tobin Filleter
  • Nitya Nand Gosvami
  • Sabine Maier
  • Ernst Meyer
  • Roland Bennewitz
Original Paper


We review recent friction measurements on ordered superstructures performed by atomic force microscopy. In particular, we consider ultrathin KBr films on NaCl(001) and Cu(001) surfaces, single and bilayer graphene on SiC(0001), and the herringbone reconstruction of Au(111). Atomically resolved friction images of these systems show periodic features spanning across several unit cells. Although the physical mechanisms responsible for the formation of these superstructures are quite different, the experimental results can be interpreted within the same phenomenological framework. A comparison between experiments and modeling shows that, in the cases of KBr films on NaCl(001) and of graphene films, the tip-surface interaction is well described by a potential with the periodicity of the substrate which is modulated or, respectively, superimposed with a potential with the symmetry of the superstructure.


Nanotribology Friction mechanisms Stick-slip AFM 



The Swiss National Science Foundation, the Swiss National Center of Competence in Research on Nanoscale Science, and the European Science Foundation (EUROCORES Programme FANAS) are gratefully acknowledged for financial support.


  1. 1.
    Bennewitz, R., Meyer, E., Hug H.-J.: Scanning Probe Microscopy. Springer, Berlin (2003)Google Scholar
  2. 2.
    Szlufarska, I., Chandross, M., Carpick, R.W.: Recent advances in single-asperity nanotribology J. Phys. D: Appl. Phys. 41, 123001 (2008)CrossRefADSGoogle Scholar
  3. 3.
    Medyanik, S.N., Liu, W.K., Sung, I.H., Carpick, R.W.: Predictions and observations of multiple slip modes in atomic-scale friction. Phys. Rev. Lett. 97, 136106 (2006)CrossRefADSPubMedGoogle Scholar
  4. 4.
    Roth, R., Glatzel, T., Steiner, P., Gnecco, E., Baratoff, A., Meyer, E.: Multiple slips in atomic-scale friction: an indicator for the lateral contact damping. Trib. Lett. 39, 63–69 (2010)CrossRefGoogle Scholar
  5. 5.
    Gnecco, E., Bennewitz, R., Meyer, E.: Abrasive wear on the atomic scale. Phys. Rev. Lett. 91, 215501 (2002)CrossRefADSGoogle Scholar
  6. 6.
    Livshits, A.I., Shluger, A.L.: Self-lubrication in scanning-force-microscope image formation on ionic surfaces. Phys. Rev. B 56, 12482–12489 (1997)CrossRefADSGoogle Scholar
  7. 7.
    Filippov, A.E., Dienwiebel, M., Frenken, J.W.M., Klafter, J., Urbakh, M.: Torque and twist against superlubricity. Phys. Rev. Lett. 100, 046102 (2008)CrossRefADSPubMedGoogle Scholar
  8. 8.
    Dienwiebel, M., Verhoeven, G.S., Pradeep, N., Frenken, J.W.M., Heimberg, J.A., Zandbergen, H.W.: Superlubricity of graphite. Phys. Rev. Lett. 92, 126101 (2004)CrossRefADSPubMedGoogle Scholar
  9. 9.
    Müser, M.: Structural lubricity: role of dimension and symmetry. Europhys. Lett. 66,97–103 (2004)CrossRefADSGoogle Scholar
  10. 10.
    Socoliuc, A., Bennewitz, R., Gnecco, E., Meyer, E.: Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultra-low friction. Phys. Rev. Lett. 92, 134301 (2004)CrossRefADSPubMedGoogle Scholar
  11. 11.
    Gnecco, E., Maier, S., Meyer, E.: Superlubricity of dry nanocontacts. J. Phys. Condens. Matt. 20, 354004 (2008)CrossRefGoogle Scholar
  12. 12.
    Bammerlin, M., Lüthi, R., Meyer, E., Baratoff, A., Lü, J., Guggisberg, M., Loppacher, C., Gerber, C., Güntherodt, H.-J.: Dynamic SFM with true atomic resolution on alkali halide surfaces. Appl. Phys. A 66, S293–S294 (1998)CrossRefADSGoogle Scholar
  13. 13.
    Steiner, P., Roth, R., Gnecco, E., Glatzel, Th., Baratoff, A., Meyer, E.: Modulation of contact resonance frequency accompanying atomic-scale stick-slip in friction microscopy. Nanotechnology 20, 495701 (2009)CrossRefGoogle Scholar
  14. 14.
    Socoliuc, A., Gnecco, E., Bennewitz, R., Meyer, E.: Ripple formation induced in localized abrasion. Phys. Rev. B 68, 115416 (2003)CrossRefADSGoogle Scholar
  15. 15.
    Pivetta, M., Patthey, F., Stengel, M., Baldereschi, A., Schneider, W.D.: Local work function Moiré pattern on ultrathin ionic films: NaCl on Ag(100). Phys. Rev. B 72, 115404 (2005)CrossRefADSGoogle Scholar
  16. 16.
    Repp, J., Meyer, G., Rieder, K.H.: Snell’s law for surface electrons: refraction of an electron gas imaged in real space. Phys. Rev. Lett. 92, 036803 (2004)CrossRefADSPubMedGoogle Scholar
  17. 17.
    Riedl, C., Starke, U., Bernhardt, J., Franke, M., Heinz, K.: Structural properties of the graphene-SiC(0001) interface as a key for the preparation of homogeneous large-terrace graphene surfaces. Phys. Rev. B 76, 245406 (2007)CrossRefADSGoogle Scholar
  18. 18.
    Mallet, P., Varchon, F., Naud, C., Magaud, L., Berger, C., Veuillen, J.Y.: Electron states of mono- and bilayer graphene on SiC probed by scanning-tunneling microscopy. Phys. Rev. B 76, 041403 (2007)CrossRefADSGoogle Scholar
  19. 19.
    Rutter, G.M., Crain, J.N., Guisinger, N.P., Li, T., First, P.N., Stroscio, J.A.: Scattering and interference in epitaxial graphene. Science 317, 219–222 (2007)CrossRefADSPubMedGoogle Scholar
  20. 20.
    Prandtl, L., Angew, Z.: Mind model of the kinetic theory of solid bodies. Math. Mech. 8, 85–106 (1928)MATHGoogle Scholar
  21. 21.
    Tomlinson, G.A.: A molecular theory of friction. Philos. Mag. 7, 905–939 (1929)Google Scholar
  22. 22.
    Lagadic, I., Clement, R., Kahn, O., Ren, J., Whangbo, M.H.: Atomic-force microscopy study of layered MnPS3 and its intercalation compounds. Chem. Mat. 6, 1940–1945 (1994)CrossRefGoogle Scholar
  23. 23.
    Kityk, A.V., Musevic, I., Slak, G., Fuith, A., Blinc, R.: Observation of an incommensurately modulated structure in dielectrics by an atomic-force microscope. Europhys. Lett. 36, 373–378 (1996)CrossRefADSGoogle Scholar
  24. 24.
    Slough, C.G., McNairy, W.W., Coleman, R.V., Garnaes, J., Prater, C.B., Hansma, P.K.: Atomic force microscopy and scanning tunneling microscopy of charge-density waves in 1T-TaSe2 and 1T-TaS2. Phys. Rev. B 42, 9255–9258 (1990)CrossRefADSGoogle Scholar
  25. 25.
    Maier, S., Pfeiffer, O., Glatzel, Th., Meyer, E., Filleter, T., Bennewitz, R.: Asymmetry in the reciprocal epitaxy of NaCl and KBr. Phys. Rev. B 75, 195408 (2007)CrossRefADSGoogle Scholar
  26. 26.
    Baker, J., Lindgard, P.A.: Monte Carlo determination of heteroepitaxial misfit structures. Phys. Rev. B 54, R11137–R11140 (1999)CrossRefADSGoogle Scholar
  27. 27.
    Maier, S., Gnecco, E., Baratoff, A., Bennewitz, R., Meyer, E.: Atomic-scale friction modulated by a buried interface: combined atomic and friction force microscopy experiments. Phys. Rev. B 78, 045432 (2008)CrossRefADSGoogle Scholar
  28. 28.
    Filleter, T., Paul, W., Bennewitz, R.: Atomic structure and friction of ultrathin films of KBr on Cu(100). Phys. Rev. B 77, 035430 (2008)CrossRefADSGoogle Scholar
  29. 29.
    Filleter, T., Emtsev, K.V., Seyller, Th., Bennewitz, R.: Local work function measurements of epitaxial graphene. Appl. Phys. Lett. 93, 133117 (2009)CrossRefADSGoogle Scholar
  30. 30.
    Wöll, C., Chiang, S., Wilson, R.J., Lippel, P.H.: Determination of atom positions at stacking-fault dislocations on Au(111) by scanning tunneling microscopy. Phys. Rev. B 39, 7988 (1989)CrossRefADSGoogle Scholar
  31. 31.
    Gosvami, N.N., Filleter, T., Egberts, P., Bennewitz, R.: Microscopic friction studies on metal surfaces. Trib. Lett. 39, 19–24 (2010)CrossRefGoogle Scholar
  32. 32.
    Weiss, M., Elmer, F.-J.: Dry friction in the Frenkel-Kontorova-Tomlinson model: static properties. Phys. Rev. B 53, 7539–7549 (1996)CrossRefADSGoogle Scholar
  33. 33.
    Steiner, P., Roth, R., Gnecco, E., Baratoff, A., Maier, S., Glatzel, Th., Meyer, E.: Two-dimensional simulation of superlubricity on NaCl and highly oriented pyrolytic graphite. Phys. Rev. B 79, 045414 (2009)CrossRefADSGoogle Scholar
  34. 34.
    Johnson, K.L., Woodhouse, J.: Stick–slip motion in the atomic force microscope. Trib. Lett. 5, 155–160 (1998)CrossRefGoogle Scholar
  35. 35.
    Barth, C., Henry, C.R.: Imaging Suzuki precipitates on NaCl: Mg2+(001) by scanning force microscopy. Phys. Rev. Lett. 100, 096101 (2008)CrossRefADSPubMedGoogle Scholar
  36. 36.
    Corso, M., Auwärter, W., Muntwiler, M., Tamai, A., Greber, T., Osterwalder, J.: Boron nitride nanomesh. Science 303, 217–220 (2004)CrossRefADSPubMedGoogle Scholar
  37. 37.
    Park, J.Y., Ogletree, D.F., Salmeron, M., Ribeiro, R.A., Canfield, P.C., Jenks, C.J., Thiel, P.A.: High frictional anisotropy of periodic and aperiodic directions on a quasicrystal surface. Science 309, 1354–1356 (2005)CrossRefADSPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Pascal Steiner
    • 1
  • Enrico Gnecco
    • 1
  • Tobin Filleter
    • 2
  • Nitya Nand Gosvami
    • 3
  • Sabine Maier
    • 1
    • 4
  • Ernst Meyer
    • 1
  • Roland Bennewitz
    • 3
  1. 1.Department of PhysicsUniversity of BaselBaselSwitzerland
  2. 2.Department of PhysicsMcGill UniversityMontrealCanada
  3. 3.INM, Leibniz Institute for New MaterialsSaarbrückenGermany
  4. 4.Materials Science DivisionLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations