Tribology Letters

, Volume 39, Issue 3, pp 257–271 | Cite as

On the Application of Transition State Theory to Atomic-Scale Wear

  • Tevis D. B. Jacobs
  • Bernd Gotsmann
  • Mark A. Lantz
  • Robert W. Carpick
Original Paper

Abstract

The atomic force microscope (AFM) tip is often used as a model of a single sliding asperity in order to study nanotribological phenomena including friction, adhesion, and wear. In particular, recent work has demonstrated a wear regime in which surface modification appears to occur in an atom-by-atom fashion. Several authors have modeled this atomic-scale wear behavior as a thermally activated bond breaking process. The present article reviews this body of work in light of concepts from formal transition state theory (also called reaction rate theory). It is found that this framework is viable as one possible description of atomic-scale wear, with impressive agreements to experimental trends found. However, further experimental work is required to fully validate this approach. It is also found that, while the Arrhenius-type equations have been widely used, there is insufficient discussion of or agreement on the specific atomic-scale reaction that is thermally activated, or its dependence on stresses and sliding velocity. Further, lacking a clear picture of the underlying mechanism, a consensus on how to measure or interpret the activation volume and activation energy is yet to emerge. This article makes suggestions for measuring and interpreting such parameters, and provides a picture of one possible thermally activated transition (in its initial, activated, and final states). Finally, directions for further experimental and simulation work are proposed for validating and extending this model and rationally interrogating the behavior of this type of wear.

Keywords

Nanotribology Contact mechanics AFM Unlubricated wear Wear mechanisms 

Notes

Acknowledgments

RWC gratefully acknowledges financial support from the National Science Foundation under grant CMMI-0826076. Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for partial support of this research. Illuminating discussions with Professors Vaclav Vitek and Mahadevan Khantha are gratefully acknowledged.

References

  1. 1.
    de Boer, M.P., Mayer, T.M.: Tribology of MEMS. MRS Bull. 26, 302–304 (2001)Google Scholar
  2. 2.
    Romig Jr., A.D., Dugger, M.T., McWhorter, P.J.: Materials issues in microelectromechanical devices: science, engineering, manufacturability and reliability. Acta Mater. 51, 5837–5866 (2003)CrossRefGoogle Scholar
  3. 3.
    Maboudian, R., Ashurst, W.R., Carraro, C.: Tribological challenges in micromechanical systems. Tribol. Lett. 12, 95–100 (2002)CrossRefGoogle Scholar
  4. 4.
    Xu, S., Amro, N.A., Liu, G.Y.: Characterization of AFM tips using nanografting. Appl. Surf. Sci. 175, 649–655 (2001)CrossRefADSGoogle Scholar
  5. 5.
    Cruchon-Dupeyrat, S., Porthun, S., Liu, G.Y.: Nanofabrication using computer-assisted design and automated vector-scanning probe lithography. Appl. Surf. Sci. 175, 636–642 (2001)CrossRefADSGoogle Scholar
  6. 6.
    Lieber, C.M., Kim, Y.: Nanomachining and manipulation with the atomic force microscope. Adv. Mater. 5, 392–394 (1993)CrossRefGoogle Scholar
  7. 7.
    Vettiger, P., Cross, G., et al.: The ‘Millipede’—nanotechnology entering data storage. IEEE Trans. Nanotechnol. 1, 39–55 (2002)CrossRefADSGoogle Scholar
  8. 8.
    Szlufarska, I., Chandross, M., Carpick, R.W.: Recent advances in single-asperity nanotribology. J. Phys. D 41, 123001 (2008)CrossRefADSGoogle Scholar
  9. 9.
    Meyer, E., Hug, H.J., Bennewitz, R.: Scanning Probe Microscopy: The Lab on a Tip. Springer, New York (2003)Google Scholar
  10. 10.
    Khurshudov, A.G., Kato, K., Koide, H.: Nano-wear of the diamond AFM probing tip under scratching of silicon, studied by AFM. Tribol. Lett. 2, 345–354 (1996)CrossRefGoogle Scholar
  11. 11.
    Bloo, M.L., Haitjema, H., Pril, W.O.: Deformation and wear of pyramidal, silicon-nitride AFM tips scanning micrometre-size features in contact mode. Measurement 25, 203–211 (1999)CrossRefGoogle Scholar
  12. 12.
    Zhao, Q.L., Dong, S., Sun, T.: Investigation of an atomic force microscope diamond tip wear in micro/nano-machining. Key Eng. Mat. 202–203, 315–320 (2001)CrossRefGoogle Scholar
  13. 13.
    Maw, W., Stevens, F., et al.: Single asperity tribochemical wear of silicon nitride studied by atomic force microscopy. J. Appl. Phys. 92, 5103–5109 (2002)CrossRefADSGoogle Scholar
  14. 14.
    D’Acunto, M.: Theoretical approach for the quantification of wear mechanisms on the nanoscale. Nanotechnology 15, 795–801 (2004)CrossRefADSGoogle Scholar
  15. 15.
    Chung, K.-H., Lee, Y.-H., Kim, D.-E.: Characteristics of fracture during the approach process and wear mechanism of a silicon AFM tip. Ultramicroscopy 102, 161–171 (2005)CrossRefPubMedGoogle Scholar
  16. 16.
    Liu, H., Klonowski, M., et al.: Advanced atomic force microscopy probes: wear resistant designs. J. Vac. Sci. Technol. B 23, 3090–3093 (2005)CrossRefGoogle Scholar
  17. 17.
    Tao, Z., Bhushan, B.: Surface modification of AFM silicon probes for adhesion and wear reduction. Tribol. Lett. 21, 1–16 (2006)CrossRefGoogle Scholar
  18. 18.
    Bhaskaran, H., Sebastian, A., Despont, M.: Nanoscale PtSi tips for conducting probe technologies. IEEE Trans. Nanotechnol. 8, 128–131 (2009)CrossRefADSGoogle Scholar
  19. 19.
    Kopycinska-Mueller, M., Geiss, R.H., Hurley, D.C.: Size-related plasticity effects in AFM silicon cantilever tips. Mater. Res. Soc. Symp. Proc. 924, 19–24 (2006)Google Scholar
  20. 20.
    Chung, K.H., Kim, D.E.: Fundamental investigation of micro wear rate using an atomic force microscope. Tribol. Lett. 15, 135–144 (2003)CrossRefGoogle Scholar
  21. 21.
    Tao, Z.H., Bhushan, B.: Surface modification of AFM Si3N4 probes for adhesion/friction reduction and imaging improvement. Trans. ASME 128, 865–875 (2006)CrossRefGoogle Scholar
  22. 22.
    Gotsmann, B., Lantz, M.A.: Atomistic wear in a single asperity sliding contact. Phys. Rev. Lett. 101, 125501 (2008)CrossRefADSPubMedGoogle Scholar
  23. 23.
    Bhushan, B., Kwak, K.J.: Velocity dependence of nanoscale wear in atomic force microscopy. Appl. Phys. Lett. 91, 3 (2007)CrossRefGoogle Scholar
  24. 24.
    Kopta, S., Salmeron, M.: The atomic scale origin of wear on mica and its contribution to friction. J. Chem. Phys. 113, 8249–8252 (2000)CrossRefADSGoogle Scholar
  25. 25.
    Agrawal, R., Moldovan, N., Espinosa, H.D.: An energy-based model to predict wear in nanocrystalline diamond atomic force microscopy tips. J. Appl. Phys. 106, 064311 (2009)CrossRefADSGoogle Scholar
  26. 26.
    Gnecco, E., Bennewitz, R., Meyer, E.: Abrasive wear on the atomic scale. Phys. Rev. Lett. 88, 215501 (2002)CrossRefADSPubMedGoogle Scholar
  27. 27.
    Bhaskaran, H., Gotsmann, B., et al.: Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon. Nat. Nanotechnol. 5, 181–185 (2010)CrossRefADSPubMedGoogle Scholar
  28. 28.
    Liu, J., Grierson, D.S., et al.: Preventing nanoscale wear of atomic force microscopy tips through the use of monolithic ultrananocrystalline diamond probes. Small 6, 1140–1149 (2010)CrossRefPubMedGoogle Scholar
  29. 29.
    Christian, J.W.: The Theory of Transformations in Metals and Alloys. Pergamon, Oxford (2002)Google Scholar
  30. 30.
    Vineyard, G.H.: Frequency factors and isotope effects in solid state rate processes. J. Phys. Chem. Solids 3, 121–127 (1957)CrossRefADSGoogle Scholar
  31. 31.
    Hanggi, P., Talkner, P., Borkovec, M.: Reaction-rate theory—50 years after Kramers. Rev. Mod. Phys. 62, 251–341 (1990)CrossRefMathSciNetADSGoogle Scholar
  32. 32.
    Kauzmann, W.: Flow of solid metals from the standpoint of chemical-rate theory. Trans. AIME 143, 57–83 (1941)Google Scholar
  33. 33.
    Rohde, R.W., Pitt, C.H.: Dislocation velocities in nickel single crystals. J. Appl. Phys. 38, 876–879 (1967)CrossRefADSGoogle Scholar
  34. 34.
    Gibbs, G.B.: Thermodynamics of thermally-activated dislocation glide. Phys. Status Solidi 10, 507–512 (1965)CrossRefGoogle Scholar
  35. 35.
    Hirth, J.P., Nix, W.D.: An analysis of thermodynamics of dislocation glide. Phys. Status Solidi 35, 177–188 (1969)CrossRefGoogle Scholar
  36. 36.
    Kocks, U.F., Argon, A.S., Ashby, M.F.: Thermodynamics and kinetics of slip. Prog. Mater. Sci. 19, 1–281 (1975)CrossRefGoogle Scholar
  37. 37.
    Taylor, G.: Thermally-activated deformation of BCC metals and alloys. Prog. Mater. Sci. 36, 29–61 (1992)CrossRefGoogle Scholar
  38. 38.
    Gibbs, G.B.: On interpretation of experimental activation parameters for dislocation glide. Phil. Mag. 20, 867–872 (1969)CrossRefADSGoogle Scholar
  39. 39.
    Hull, D., Bacon, D.J.: Introduction to Dislocations, 4th edn. Butterworth-Heinemann, Oxford (1984)MATHGoogle Scholar
  40. 40.
    Park, N.S., Kim, M.W., et al.: Atomic layer wear of single-crystal calcite in aqueous solution scanning force microscopy. J. Appl. Phys. 80, 2680–2686 (1996)CrossRefADSGoogle Scholar
  41. 41.
    Sheehan, P.E.: The wear kinetics of NaCl under dry nitrogen and at low humidities. Chem. Phys. Lett. 410, 151–155 (2005)CrossRefADSGoogle Scholar
  42. 42.
    Briscoe, B.J., Evans, D.C.B.: The shear properties of Langmuir-Blodgett Layers. Proc. R. Soc. Lond. A 380, 389–407 (1982)CrossRefADSGoogle Scholar
  43. 43.
    Helt, J.M., Batteas, J.D.: Wear of mica under aqueous environments: direct observation of defect nucleation by AFM. Langmuir 21, 633–639 (2005)CrossRefPubMedGoogle Scholar
  44. 44.
    Hong, U.S., Jung, S.L., et al.: Wear mechanism of multiphase friction materials with different phenolic resin matrices. Wear 266, 739–744 (2009)CrossRefGoogle Scholar
  45. 45.
    Luan, B., Robbins, M.O.: The breakdown of continuum models for mechanical contacts. Nature 435, 929–932 (2005)CrossRefADSPubMedGoogle Scholar
  46. 46.
    Mo, Y.F., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457, 1116–1119 (2009)CrossRefADSPubMedGoogle Scholar
  47. 47.
    Krausz, A.S., Eyring, H.: Deformation Kinetics. Wiley, New York (1975)Google Scholar
  48. 48.
    Li, J.: The mechanics and physics of defect nucleation. MRS Bull. 32, 151–159 (2007)Google Scholar
  49. 49.
    Zhao, X.Y., Hamilton, M., et al.: Thermally activated friction. Tribol. Lett. 27, 113–117 (2007)CrossRefGoogle Scholar
  50. 50.
    Zhao, X., Phillpot, S.R. et al.: Transition from thermal to athermal friction under cryogenic conditions. Phys. Rev. Lett. 102, 1861021–1861024 (2009)Google Scholar
  51. 51.
    Jansen, L., Schirmeisen, A., et al.: Nanoscale frictional dissipation into shear-stressed polymer relaxations. Phys. Rev. Lett. 102, 4 (2009)CrossRefGoogle Scholar
  52. 52.
    Schirmeisen, A., Jansen, L., et al.: Temperature dependence of point contact friction on silicon. Appl. Phys. Lett. 88, 123108 (2006)CrossRefADSGoogle Scholar
  53. 53.
    Barel, I., Urbakh, M., et al.: Multibond dynamics of nanoscale friction: the role of temperature. Phys. Rev. Lett. 104, 066104 (2010)CrossRefADSPubMedGoogle Scholar
  54. 54.
    Johnson, K.L.: Contact Mechanics. University Press, Cambridge (1987)Google Scholar
  55. 55.
    Carpick, R.W., Salmeron, M.: Scratching the surface: fundamental investigations of tribology with atomic force microscopy. Chem. Rev. 97, 1163–1194 (1997)CrossRefPubMedGoogle Scholar
  56. 56.
    Zworner, O., Holscher, H., et al.: The velocity dependence of frictional forces in point-contact friction. Appl. Phys. A 66, S263–S267 (1998)CrossRefADSGoogle Scholar
  57. 57.
    Riedo, E., Gnecco, E., et al.: Interaction potential and hopping dynamics governing sliding friction. Phys. Rev. Lett. 91, 84502 (2003)CrossRefADSGoogle Scholar
  58. 58.
    Bouhacina, T., Aimé, J.P., et al.: Tribological behaviour of a polymer grafted in silanized silica probed with a nanotip. Phys. Rev. B 56, 7694–7703 (1997)CrossRefADSGoogle Scholar
  59. 59.
    Gnecco, E., Bennewitz, R., et al.: Velocity dependence of atomic friction. Phys. Rev. Lett. 84, 1172–1175 (2000)CrossRefADSPubMedGoogle Scholar
  60. 60.
    Chen, J., Ratera, I., et al.: Velocity dependence of friction and hydrogen bonding effects. Phys. Rev. Lett. 96, 4 (2006)Google Scholar
  61. 61.
    Yi, S., Dube, M., Grant, M.: Thermal effects on atomic friction. Phys. Rev. Lett. 87, 174301 (2001)CrossRefADSGoogle Scholar
  62. 62.
    Gao, G.T., Mikulski, P.T., Harrison, J.A.: Molecular-scale tribology of amorphous carbon coatings: effects of film thickness, adhesion, and long-range interactions. J. Am. Chem. Soc. 124, 7202–7209 (2002)CrossRefPubMedGoogle Scholar
  63. 63.
    Jarvis, M.R., Perez, R., Payne, M.C.: Can atomic force microscopy achieve atomic resolution in contact mode? Phys. Rev. Lett. 86, 1287–1290 (2001)CrossRefADSPubMedGoogle Scholar
  64. 64.
    Harrison, J.A., Brenner, D.W.: Simulated tribochemistry—an atomic-scale view of the wear of diamond. J. Am. Chem. Soc. 116, 10399–10402 (1994)CrossRefGoogle Scholar
  65. 65.
    Kim, H.J., Karthikeyan, S., Rigney, D.: A simulation study of the mixing, atomic flow and velocity profiles of crystalline materials during sliding. Wear 267, 1130–1136 (2009)CrossRefGoogle Scholar
  66. 66.
    Rigney, D.A., Fu, X.Y., et al.: Examples of structural evolution during sliding and shear of ductile materials. Scr. Mater. 49, 977–983 (2003)CrossRefGoogle Scholar
  67. 67.
    Zhu, T., Li, J., et al.: Stress-dependent molecular pathways of silica-water reaction. J. Mech. Phys. Sol. 53, 1597–1623 (2005)MATHCrossRefMathSciNetADSGoogle Scholar
  68. 68.
    Zhu, T., Li, J., et al.: Temperature and strain-rate dependence of surface dislocation nucleation. Phys. Rev. Lett. 100, 4 (2008)Google Scholar
  69. 69.
    Crawford, J.H., Slifkin, L.M.: Point Defects in Solids. Plenum Publishing, New York (1972)Google Scholar
  70. 70.
    Liu, J., Notbohm, J.K. et al.: Method for characterizing nanoscale wear of atomic force microscope tips. ACS Nano (2010). doi:10.1021/nn100246g

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Tevis D. B. Jacobs
    • 1
  • Bernd Gotsmann
    • 2
  • Mark A. Lantz
    • 2
  • Robert W. Carpick
    • 3
  1. 1.Department of Materials Science and EngineeringUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.IBM Research, ZurichRueschlikonSwitzerland
  3. 3.Department of Mechanical Engineering and Applied MechanicsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations