Tribology Letters

, Volume 39, Issue 2, pp 169–175 | Cite as

Temperature-Dependent Atomic Scale Friction and Wear on PbS(100)

Original Paper

Abstract

Friction and wear on PbS(100) surfaces have been investigated on the atomic scale as a function of temperature with atomic force microscopy. At room temperature and above, the PbS(100) surface exhibited low friction (μ < 0.05) in contact with a silicon nitride probe tip, provided that interfacial wear was not encountered. In the absence of wear, friction increased exponentially with decreasing temperature, transitioning to an athermal behavior near 200 K. An Arrhenius analysis of the temperature dependence of friction yielded an activation energy ∆E = 0.32 ± 0.02 eV for the sliding contact of a silicon nitride tip on PbS(100).

Keywords

Unlubricated friction Friction mechanisms AFM Wear mechanisms Low temperature 

Notes

Acknowledgments

The authors wish to acknowledge the financial support of the Air Force Office of Scientific Research.

References

  1. 1.
    Leiro, J.A., Laajalehto, K., Peltoniemi, M.S., Torhola, M., Szczerbakow, A.: Surface core-level shift and AFM study of the galena (100) surface. Surf. Interface Anal. 33, 964–967 (2002)CrossRefGoogle Scholar
  2. 2.
    Cotterill, G.F., Bartlett, R., Hughes, A.E., Sexton, B.A.: STM investigation of galena surfaces in air. Surf. Sci. Lett. 232, L211–L214 (1990)CrossRefGoogle Scholar
  3. 3.
    Wittstock, G., Kartio, I., Hirsch, D., Kunze, S., Szargan, R.: Oxidation of galena in acetate buffer investigated by atomic force microscopy and photoelectron spectroscopy. Langmuir 12, 5709–5721 (1996)CrossRefGoogle Scholar
  4. 4.
    Blum, A.S., Schafer, A.J.D., Engel, T.: An AC-STM study of mineral sulfides and the tip induced oxidation of PbS. J. Phys. Chem. B 106, 8197–8205 (2002)CrossRefGoogle Scholar
  5. 5.
    Laajalehto, K., Smart, R.St.C, Ralston, J., Suoninen, E.: STM and XPS investigation of reaction of galena in air. Appl. Surf. Sci. 64, 29–39 (1993)CrossRefADSGoogle Scholar
  6. 6.
    Mikhlin, Y.L., Romanchenko, A.S., Shagaev, A.A.: Scanning probe microscopy studies of PbS surfaces oxidized in air and etched in aqueous acid solutions. Appl. Surf. Sci. 252, 5645 (2006)CrossRefADSGoogle Scholar
  7. 7.
    Kendelewicz, T., Liu, P., Brown, G.E., Nelson, E.J.: Atomic geometry of the PbS(100) surface. Surf. Sci. 395, 229–238 (1998)CrossRefADSGoogle Scholar
  8. 8.
    Zheng, N.J., Wilson, I.H., Knipping, U., Burt, D.M., Krinsley, D.H., Tsong, I.S.T.: Atomically resolved scanning tunneling microscopy images of dislocations. Phys. Rev. B 38, 12780–12782 (1988)CrossRefADSGoogle Scholar
  9. 9.
    Eggleston, C.M., Hochella, M.F.: Scanning tunneling microscopy of galena (100) surface oxidation and sorption of aqueous gold. Science 254, 983–986 (1991)CrossRefPubMedADSGoogle Scholar
  10. 10.
    Becker, U., Hochella, M.F.: The calculation of STM images, STS spectra, and XPS peak shifts for galena: new tools for understanding mineral surface chemistry. Geochim. Cosmochim. Acta 60, 2413–2426 (1996)CrossRefADSGoogle Scholar
  11. 11.
    Higgins, S.R., Hamers, R.J.: Spatially-resolved electrochemistry of the lead sulfide (galena)(001) surface by electrochemical scanning-tunneling-microscopy. Surf. Sci. 324, 263–281 (1995)CrossRefADSGoogle Scholar
  12. 12.
    Kim, B.S., Hayes, R.A., Prestidge, C.A., Ralston, J., Smart, R.St.C.: Scanning-tunneling-microscopy studies of galena–the mechanisms of oxidation in aqueous-solution. Langmuir 11, 2554–2562 (1995)CrossRefGoogle Scholar
  13. 13.
    Baak, T., Dietz, E.D., Shouf, M., Walmsley, J.A.: Coefficients of friction in the tin(II) sulfide–lead sulfide system. J. Chem. Eng. Data 11, 587–588 (1966)CrossRefGoogle Scholar
  14. 14.
    Perez, P.L., Boehman, A.L., Perez, J.M.: Oil consumption studies in a single-cylinder diesel engine using solid-film lubricants. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 222, 593–600 (2008)CrossRefGoogle Scholar
  15. 15.
    Yang, H.M., Yang, M., Zhang, Y., Chen, G.X.: In situ synthesis and lubrication of PbS nanoparticles in lamellar liquid crystal. Colloid J. 66, 635–641 (2004)CrossRefGoogle Scholar
  16. 16.
    Chen, S., Liu, W.M.: Oleic acid capped PbS nanoparticles: synthesis, characterization and tribological properties. Mater. Chem. Phys. 98, 183–189 (2006)CrossRefGoogle Scholar
  17. 17.
    Zhang, W.G., Chen, S., Liu, W.M., Yu, L.G.: Friction and wear behaviour of Sialon/(Ca, Mg)-Sialon with lubrication by coated PbS nanoparticles as oil additives. Lubr. Sci. 16, 47–56 (2003)CrossRefGoogle Scholar
  18. 18.
    Gudmand-Hoyer, L., Bach, A., Nielsen, G.T., Morgen, P.: Tribological properties of automotive disc brakes with solid lubricants. Wear 232, 168–175 (1999)CrossRefGoogle Scholar
  19. 19.
    Resch, R., Friedbacher, G., Grasserbauer, M., Kanniainen, T., Lindroos, S., Leskelae, M., Niinistoe, L.: Lateral force microscopy and force modulation microscopy on SILAR-grown lead sulfide samples. Appl. Surf. Sci. 120, 51–57 (1997)CrossRefADSGoogle Scholar
  20. 20.
    Bahadur, S., Kapoor, A.: The effect of ZnF2, ZnS and PbS fillers on the tribological behavior of nylon-11. Wear 155, 49–61 (1992)CrossRefGoogle Scholar
  21. 21.
    Hopkins, V., Gaddis, D.: Friction of solid film lubricants being developed for use in space environments. Lubr. Eng. 21, 52–58 (1965)Google Scholar
  22. 22.
    Zhao, X.Y., Hamilton, M., Sawyer, W.G., Perry, S.S.: Thermally activated friction. Tribol. Lett. 27, 113–117 (2007)CrossRefGoogle Scholar
  23. 23.
    Zhao, X.Y., Phillpot, S.R., Sawyer, W.G., Sinnott, S.B., Perry, S.S.: Transition from thermal to athermal friction under cryogenic conditions. Phys. Rev. Lett. 102, 186102 (2009)CrossRefPubMedADSGoogle Scholar
  24. 24.
    Shannon, R.D.: Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976)CrossRefADSGoogle Scholar
  25. 25.
    Ogletree, D.F., Carpick, R.W., Salmeron, M.: Calibration of frictional forces in atomic force microscopy. Rev. Sci. Instrum. 67, 3298–3306 (1996)CrossRefADSGoogle Scholar
  26. 26.
    Carpick, R.W., Agraït, N., Ogletree, D.F., Salmeron, M.: Measurement of interfacial shear (friction) with an ultrahigh vacuum atomic force microscope. J. Vac. Sci. Technol. B 14, 1289–1295 (1996)CrossRefGoogle Scholar
  27. 27.
    Derjaguin, B.V., Muller, V.M., Toporov, Y.P.: Effect of contact deformations on adhesion of particles. J. Colloid Interface Sci. 53, 314–326 (1975)CrossRefGoogle Scholar
  28. 28.
    Bhagavantam, S., Rao, T.S.: Elastic constants of galena. Nature 168, 42 (1951)CrossRefADSGoogle Scholar
  29. 29.
    Khan, A., Philip, J., Hess, P.: Young’s modulus of silicon nitride used in scanning force microscope cantilevers. J. Appl. Phys. 95, 1667–1772 (2004)CrossRefADSGoogle Scholar
  30. 30.
    Zheng, N.J., Wilson, I.H., Knipping, U., Burt, D.M., Krinsley, D.H., Tsong, I.S.T.: Atomically resolved scanning tunneling microscopy images of dislocations. Phys. Rev. B 38(17), 12780 (1988)CrossRefADSGoogle Scholar
  31. 31.
    Socoliuc, A., Gnecco, E., Bennewitz, R., Meyer, E.: Ripple formation induced in localized abrasion. Phys. Rev. B 68, 115416 (2003)CrossRefADSGoogle Scholar
  32. 32.
    Merkle, A.P., Marks, L.D.: A predictive analytical friction model from basic theories of interfaces, contacts and dislocations. Tribol. Lett. 26, 73–84 (2007)CrossRefGoogle Scholar
  33. 33.
    Schuh, C.A., Masonand, J.K., Lund, A.C.: Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nat. Mater. 4, 617–621 (2005)CrossRefPubMedADSGoogle Scholar
  34. 34.
    Bei, H., Gao, Y.F., Shim, S., George, E.P., Pharr, G.M.: Strength differences arising from homogeneous versus heterogeneous dislocation nucleation. Phys. Rev. B 77, 060103(R) (2008)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations