# Atomistic Insights into the Running-in, Lubrication, and Failure of Hydrogenated Diamond-Like Carbon Coatings

- 813 Downloads
- 59 Citations

## Abstract

The tribological performance of hydrogenated diamond-like carbon (DLC) coatings is studied by molecular dynamics simulations employing a screened reactive bond-order potential that has been adjusted to reliably describe bond-breaking under shear. Two types of DLC films are grown by CH_{2} deposition on an amorphous substrate with 45 and 60 eV impact energy resulting in 45 and 30% H content as well as 50 and 30% sp^{3} hybridization of the final films, respectively. By combining two equivalent realizations for both impact energies, a hydrogen-depleted and a hydrogen-rich tribo-contact is formed and studied for a realistic sliding speed of 20 m s^{−1} and loads of 1 and 5 GPa. While the hydrogen-rich system shows a pronounced drop of the friction coefficient for both loads, the hydrogen-depleted system exhibits such kind of running-in for 1 GPa, only. Chemical passivation of the DLC/DLC interface explains this running-in behavior. Fluctuations in the friction coefficient occurring at the higher load can be traced back to a cold welding of the DLC/DLC tribo-surfaces, leading to the formation of a transfer film (transferred from one DLC partner to the other) and the establishment of a new tribo-interface with a low friction coefficient. The presence of a hexadecane lubricant leads to low friction coefficients without any running-in for low loads. At 10 GPa load, the lubricant starts to degenerate resulting in enhanced friction.

### Keywords

Running-in Coatings Friction-reducing Boundary lubrication Friction mechanisms Unlubricated friction Carbon## Notes

### Acknowledgment

We thank the BMBF for funding this study within project OTRISKO. Computations were carried out on the clusters Hercules (Fh-ITWM), O2 (Fh-EMI), and Joe1 (Fh-IWM) within the Fraunhofer Society.

### References

- 1.Robertson, J.: Diamond-like amorphous carbon. Mater. Sci. Eng. R
**37**, 129–281 (2002)CrossRefGoogle Scholar - 2.Erdemir, A., Donnet, C.: Tribology of diamond-like carbon films: recent progress and future prospects. J. Phys. D: Appl. Phys.
**39**, R311–R327 (2006)CrossRefGoogle Scholar - 3.Ferrari, A.C.: Diamond-like carbon for magnetic storage disks. Surf. Coat. Technol.
**180-181**, 190–206 (2004)CrossRefGoogle Scholar - 4.Brand, J., Beckmann, C., Blug, B., Konrath, G., Hollstein, T.: Diamond-like carbon coatings—a new design element for tribological applications. Ind. Lubr. Tribol.
**54**, 291–295 (2002)CrossRefGoogle Scholar - 5.Maboudian, R.: Adhesion and friction issues associated with reliable operation of MEMS. MRS Bullet.
**23**, 47–51 (1998)Google Scholar - 6.Sullivan, J.P., Friedmann, T.A., Hjort, K.: Diamond and amorphous carbon MEMS. MRS Bull.
**26**, 309–311 (2001)Google Scholar - 7.Fontaine, J., Le Mogne, T., Loubet, J. L., Belin, M.: Achieving superlow friction with hydrogenated amorphous carbon: some key requirements. Thin Solid Films
**482**, 99–108 (2005)CrossRefADSGoogle Scholar - 8.Erdemir, A., Eryilmaz, O. L., Fenske, G.: Synthesis of diamondlike carbon films with superlow friction and wear properties. J. Vac. Sci. Technol. A
**18**, 1987–1992 (2000)CrossRefADSGoogle Scholar - 9.Donnet, C., Belin, M., Augé, J.C., Martin, J.M., Grill, A., Patel, V.: Tribochemistry of diamond-like carbon coatings in various environments. Surf. Coat. Technol.
**68–69**, 626–631 (1994)CrossRefGoogle Scholar - 10.Moseler, M., Gumbsch, P., Casiraghi, C., Ferrari, A.C., Robertson, J.: The ultrasmoothness of diamond-like carbon surfaces. Science
**309**, 1545–1548 (2005)CrossRefPubMedADSGoogle Scholar - 11.Harrison, J.A., Schall, J.D., Knippenberg, M.T., Gao, G., Mikulski, P.T.: Elucidating atomic-scale friction using molecular dynamics and specialized analysis techniques. J. Phys. Condens. Matter.
**20**, 354009 (2008)CrossRefGoogle Scholar - 12.Harrison, J.A., Gao, G., Schall, J.D., Knippenberg, M.T., Mikulski, P.T.: Friction between solids. Philos. Trans. R. Soc. A
**366**, 1469–1495 (2008)CrossRefADSGoogle Scholar - 13.Knippenberg, M.T., Mikulski, P.T., Dunlap, B.I., Harrison, J.A.: Atomic contributions to friction and load for tip–self-assembled monolayers interactions. Phys. Rev. B
**78**, 235409 (2008)CrossRefADSGoogle Scholar - 14.Mikulski, P.T., Herman, L.A., Harrison, J.A.: Odd and even model self-assembled monolayers: links between friction and structure. Langmuir
**21**, 12197–12206 (2005)CrossRefPubMedGoogle Scholar - 15.Gao, G.T., Mikulski, P.T., Harrison, J.A.: Molecular-scale tribology of amorphous carbon coatings: effects of film thickness, adhesion, and long-range interactions. J. Am. Chem. Soc.
**124**, 7202–7209 (2002)CrossRefPubMedGoogle Scholar - 16.Pastewka, L., Moser, S., Moseler, M., Blug, B., Meier, S., Hollstein, T., Gumbsch, P.: The running-in of amorphous hydrocarbon tribocoatings: a comparison between experiment and molecular dynamics simulations. Int. J. Mater. Res.
**99**, 1136–1143 (2008)Google Scholar - 17.Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press, Oxford (1989)Google Scholar
- 18.Finnis, M.W.: Interatomic Forces in Condensed Matter. Oxford University Press, Oxford (2004)Google Scholar
- 19.Kohn, W., Sham, L.J.; Self-consistent equations including exchange and correlation effects. Phys. Rev.
**140**, A1133–A1138 (1965)CrossRefMathSciNetADSGoogle Scholar - 20.Tersoff, J.: New empirical model for the structural properties of silicon. Phys. Rev. Lett.
**56**, 632–635 (1986)CrossRefPubMedADSGoogle Scholar - 21.Abell, G.C.: Empirical chemical pseudopotential theory of molecular and metallic bonding. Phys. Rev. B
**31**, 6184–6196 (1985)CrossRefADSGoogle Scholar - 22.Brenner, D.W.: Empirical potential for hydrocarbons for use in simulating chemical vapor deposition of diamond films. Phys. Rev. B
**42**, 9458–9471 (1990)CrossRefADSGoogle Scholar - 23.Brenner, D.W., Shenderova, O.A., Harrison, J.A., Stuart, S.J., Ni B., Sinnott, S.B.: A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter.
**14**, 783–802 (2002)CrossRefADSGoogle Scholar - 24.Marder M. Molecular dynamics of cracks. Comput. Sci. Eng.
**1**(5), 48–55 (1999)CrossRefGoogle Scholar - 25.Pastewka, L., Pou, P., Pérez, R., Gumbsch, P., Moseler, M.: Describing bond-breaking processes by reactive potentials: importance of an environment-dependent interaction range. Phys. Rev. B
**78**, 161402(R) (2008)CrossRefADSGoogle Scholar - 26.Mattoni, A., Ippolito, M., Colombo, L.: Atomistic modeling of brittleness in covalent materials. Phys. Rev. B
**76**, 224103 (2007)CrossRefADSGoogle Scholar - 27.Baskes, M.I., Angelo, J.E., Bisson, C.L.: Atomistic calculations of composite interfaces. Modell. Simul. Mater. Sci. Eng.
**2**, 505–518 (1994)CrossRefADSGoogle Scholar - 28.Jäger, H.U., Albe, K.: Molecular-dynamics simulations of steady-state growth of ion-deposited tetrahedral amorphous carbon films. J. Appl. Phys.
**88**, 1129–1135 (2000)CrossRefADSGoogle Scholar - 29.Kumagai, T., Hara, S., Choi, J., Izumi, S., Kato, T.: Development of empirical bond-order-type interatomic potential for amorphous carbon structures. J. Appl. Phys.
**105**, 064310 (2009)CrossRefADSGoogle Scholar - 30.Adelman, S.A., Doll, J.D.: Generalized langevin equation approach for atom/solid-surface scattering: general formulation for classical scattering of harmonic solids. J. Chem. Phys.
**64**, 2375–2388 (1976)CrossRefADSGoogle Scholar - 31.Franzblau, D.S.: Computation of ring statistics for network models of solids. Phys. Rev. B
**44**, 4925–4930 (1991)CrossRefADSGoogle Scholar - 32.Thompson, P.A., Robbins, M.O.: Shear flow near solids: epitaxial order and flow boundary conditions. Phys. Rev. A
**41**, 6830 (1990)CrossRefPubMedADSGoogle Scholar - 33.Persson, B.N.J. Sliding Friction. Springer, Berlin (2000)MATHGoogle Scholar
- 34.Stuart, S.J., Tutein, A.T., Harrison, J.A.: A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys.
**112**, 6472–6486 (2000)CrossRefADSGoogle Scholar - 35.Mortensen, J.J., Hansen, L.W., Jacobsen, K.W.: Real-space grid implementation of the projector augmented wave method. Phys. Rev. B
**71**, 035109 (2005)CrossRefADSGoogle Scholar - 36.Dienwiebel, M., Verhoeven, G.S., Pradeep, N., Frenken, J.W.M., Heimberg, J.A., Zandbergen, H.W.: Superlubricity of graphite. Phys. Rev. Lett.
**92**, 126101 (2004)CrossRefPubMedADSGoogle Scholar - 37.Gupta, B.K., Malshe, A., Bhushan, B., Subramaniam, V.V.: Friction and wear properties of chemomechanically polished diamond films. J. Tribol.
**116**, 445–453 (1994)CrossRefGoogle Scholar - 38.Lo, S.-W., Tsai, S.-D.: Real-time observation of the evolution of contact area under boundary lubrication in sliding contact. J. Tribol.
**124**, 229–238 (2002)CrossRefGoogle Scholar - 39.Öttinger, H.C.: Beyond Equilibrium Thermodynamics. Wiley, New York (2005)CrossRefGoogle Scholar
- 40.Zwanzig, R.: Nonequilibrium Statistical Mechanics. Oxford University Press, Oxford (2001)Google Scholar
- 41.Grabert, H.; Projection Operator Techniques in Nonequilibrium Statistical Mechanics. Springer, Berlin (1982)Google Scholar
- 42.Svahn, F., Kassman-Rudolphi, Å., Hogmark, S.: On the effect of surface topography and humidity on lubricated running-in of a carbon based coating. Wear
**261**, 1237–1246 (2006)CrossRefGoogle Scholar - 43.Kohlhoff, S., Gumbsch, P., Fischmeister, H.F.: Crack propagation in b.c.c. crystals studied with a combined finite-element and atomistic model. Philos. Mag. A
**64**, 851–878 (1991)CrossRefADSGoogle Scholar - 44.Campañá, C., Müser, M.H.: Practical green’s function approach to the simulation of elastic semi-infinite solids. Phys. Rev. B
**74**, 075420 (2006)CrossRefADSGoogle Scholar