Advertisement

Tribology Letters

, Volume 39, Issue 1, pp 49–61 | Cite as

Atomistic Insights into the Running-in, Lubrication, and Failure of Hydrogenated Diamond-Like Carbon Coatings

  • Lars Pastewka
  • Stefan Moser
  • Michael Moseler
Original Paper

Abstract

The tribological performance of hydrogenated diamond-like carbon (DLC) coatings is studied by molecular dynamics simulations employing a screened reactive bond-order potential that has been adjusted to reliably describe bond-breaking under shear. Two types of DLC films are grown by CH2 deposition on an amorphous substrate with 45 and 60 eV impact energy resulting in 45 and 30% H content as well as 50 and 30% sp3 hybridization of the final films, respectively. By combining two equivalent realizations for both impact energies, a hydrogen-depleted and a hydrogen-rich tribo-contact is formed and studied for a realistic sliding speed of 20 m s−1 and loads of 1 and 5 GPa. While the hydrogen-rich system shows a pronounced drop of the friction coefficient for both loads, the hydrogen-depleted system exhibits such kind of running-in for 1 GPa, only. Chemical passivation of the DLC/DLC interface explains this running-in behavior. Fluctuations in the friction coefficient occurring at the higher load can be traced back to a cold welding of the DLC/DLC tribo-surfaces, leading to the formation of a transfer film (transferred from one DLC partner to the other) and the establishment of a new tribo-interface with a low friction coefficient. The presence of a hexadecane lubricant leads to low friction coefficients without any running-in for low loads. At 10 GPa load, the lubricant starts to degenerate resulting in enhanced friction.

Keywords

Running-in Coatings Friction-reducing Boundary lubrication Friction mechanisms Unlubricated friction Carbon 

Notes

Acknowledgment

We thank the BMBF for funding this study within project OTRISKO. Computations were carried out on the clusters Hercules (Fh-ITWM), O2 (Fh-EMI), and Joe1 (Fh-IWM) within the Fraunhofer Society.

References

  1. 1.
    Robertson, J.: Diamond-like amorphous carbon. Mater. Sci. Eng. R 37, 129–281 (2002)CrossRefGoogle Scholar
  2. 2.
    Erdemir, A., Donnet, C.: Tribology of diamond-like carbon films: recent progress and future prospects. J. Phys. D: Appl. Phys. 39, R311–R327 (2006)CrossRefGoogle Scholar
  3. 3.
    Ferrari, A.C.: Diamond-like carbon for magnetic storage disks. Surf. Coat. Technol. 180-181, 190–206 (2004)CrossRefGoogle Scholar
  4. 4.
    Brand, J., Beckmann, C., Blug, B., Konrath, G., Hollstein, T.: Diamond-like carbon coatings—a new design element for tribological applications. Ind. Lubr. Tribol. 54, 291–295 (2002)CrossRefGoogle Scholar
  5. 5.
    Maboudian, R.: Adhesion and friction issues associated with reliable operation of MEMS. MRS Bullet. 23, 47–51 (1998)Google Scholar
  6. 6.
    Sullivan, J.P., Friedmann, T.A., Hjort, K.: Diamond and amorphous carbon MEMS. MRS Bull. 26, 309–311 (2001)Google Scholar
  7. 7.
    Fontaine, J., Le Mogne, T., Loubet, J. L., Belin, M.: Achieving superlow friction with hydrogenated amorphous carbon: some key requirements. Thin Solid Films 482, 99–108 (2005)CrossRefADSGoogle Scholar
  8. 8.
    Erdemir, A., Eryilmaz, O. L., Fenske, G.: Synthesis of diamondlike carbon films with superlow friction and wear properties. J. Vac. Sci. Technol. A 18, 1987–1992 (2000)CrossRefADSGoogle Scholar
  9. 9.
    Donnet, C., Belin, M., Augé, J.C., Martin, J.M., Grill, A., Patel, V.: Tribochemistry of diamond-like carbon coatings in various environments. Surf. Coat. Technol. 68–69, 626–631 (1994)CrossRefGoogle Scholar
  10. 10.
    Moseler, M., Gumbsch, P., Casiraghi, C., Ferrari, A.C., Robertson, J.: The ultrasmoothness of diamond-like carbon surfaces. Science 309, 1545–1548 (2005)CrossRefPubMedADSGoogle Scholar
  11. 11.
    Harrison, J.A., Schall, J.D., Knippenberg, M.T., Gao, G., Mikulski, P.T.: Elucidating atomic-scale friction using molecular dynamics and specialized analysis techniques. J. Phys. Condens. Matter. 20, 354009 (2008)CrossRefGoogle Scholar
  12. 12.
    Harrison, J.A., Gao, G., Schall, J.D., Knippenberg, M.T., Mikulski, P.T.: Friction between solids. Philos. Trans. R. Soc. A 366, 1469–1495 (2008)CrossRefADSGoogle Scholar
  13. 13.
    Knippenberg, M.T., Mikulski, P.T., Dunlap, B.I., Harrison, J.A.: Atomic contributions to friction and load for tip–self-assembled monolayers interactions. Phys. Rev. B 78, 235409 (2008)CrossRefADSGoogle Scholar
  14. 14.
    Mikulski, P.T., Herman, L.A., Harrison, J.A.: Odd and even model self-assembled monolayers: links between friction and structure. Langmuir 21, 12197–12206 (2005)CrossRefPubMedGoogle Scholar
  15. 15.
    Gao, G.T., Mikulski, P.T., Harrison, J.A.: Molecular-scale tribology of amorphous carbon coatings: effects of film thickness, adhesion, and long-range interactions. J. Am. Chem. Soc. 124, 7202–7209 (2002)CrossRefPubMedGoogle Scholar
  16. 16.
    Pastewka, L., Moser, S., Moseler, M., Blug, B., Meier, S., Hollstein, T., Gumbsch, P.: The running-in of amorphous hydrocarbon tribocoatings: a comparison between experiment and molecular dynamics simulations. Int. J. Mater. Res. 99, 1136–1143 (2008)Google Scholar
  17. 17.
    Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press, Oxford (1989)Google Scholar
  18. 18.
    Finnis, M.W.: Interatomic Forces in Condensed Matter. Oxford University Press, Oxford (2004)Google Scholar
  19. 19.
    Kohn, W., Sham, L.J.; Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)CrossRefMathSciNetADSGoogle Scholar
  20. 20.
    Tersoff, J.: New empirical model for the structural properties of silicon. Phys. Rev. Lett. 56, 632–635 (1986)CrossRefPubMedADSGoogle Scholar
  21. 21.
    Abell, G.C.: Empirical chemical pseudopotential theory of molecular and metallic bonding. Phys. Rev. B 31, 6184–6196 (1985)CrossRefADSGoogle Scholar
  22. 22.
    Brenner, D.W.: Empirical potential for hydrocarbons for use in simulating chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458–9471 (1990)CrossRefADSGoogle Scholar
  23. 23.
    Brenner, D.W., Shenderova, O.A., Harrison, J.A., Stuart, S.J., Ni B., Sinnott, S.B.: A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter. 14, 783–802 (2002)CrossRefADSGoogle Scholar
  24. 24.
    Marder M. Molecular dynamics of cracks. Comput. Sci. Eng. 1(5), 48–55 (1999)CrossRefGoogle Scholar
  25. 25.
    Pastewka, L., Pou, P., Pérez, R., Gumbsch, P., Moseler, M.: Describing bond-breaking processes by reactive potentials: importance of an environment-dependent interaction range. Phys. Rev. B 78, 161402(R) (2008)CrossRefADSGoogle Scholar
  26. 26.
    Mattoni, A., Ippolito, M., Colombo, L.: Atomistic modeling of brittleness in covalent materials. Phys. Rev. B 76, 224103 (2007)CrossRefADSGoogle Scholar
  27. 27.
    Baskes, M.I., Angelo, J.E., Bisson, C.L.: Atomistic calculations of composite interfaces. Modell. Simul. Mater. Sci. Eng. 2, 505–518 (1994)CrossRefADSGoogle Scholar
  28. 28.
    Jäger, H.U., Albe, K.: Molecular-dynamics simulations of steady-state growth of ion-deposited tetrahedral amorphous carbon films. J. Appl. Phys. 88, 1129–1135 (2000)CrossRefADSGoogle Scholar
  29. 29.
    Kumagai, T., Hara, S., Choi, J., Izumi, S., Kato, T.: Development of empirical bond-order-type interatomic potential for amorphous carbon structures. J. Appl. Phys. 105, 064310 (2009)CrossRefADSGoogle Scholar
  30. 30.
    Adelman, S.A., Doll, J.D.: Generalized langevin equation approach for atom/solid-surface scattering: general formulation for classical scattering of harmonic solids. J. Chem. Phys. 64, 2375–2388 (1976)CrossRefADSGoogle Scholar
  31. 31.
    Franzblau, D.S.: Computation of ring statistics for network models of solids. Phys. Rev. B 44, 4925–4930 (1991)CrossRefADSGoogle Scholar
  32. 32.
    Thompson, P.A., Robbins, M.O.: Shear flow near solids: epitaxial order and flow boundary conditions. Phys. Rev. A 41, 6830 (1990)CrossRefPubMedADSGoogle Scholar
  33. 33.
    Persson, B.N.J. Sliding Friction. Springer, Berlin (2000)zbMATHGoogle Scholar
  34. 34.
    Stuart, S.J., Tutein, A.T., Harrison, J.A.: A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472–6486 (2000)CrossRefADSGoogle Scholar
  35. 35.
    Mortensen, J.J., Hansen, L.W., Jacobsen, K.W.: Real-space grid implementation of the projector augmented wave method. Phys. Rev. B 71, 035109 (2005)CrossRefADSGoogle Scholar
  36. 36.
    Dienwiebel, M., Verhoeven, G.S., Pradeep, N., Frenken, J.W.M., Heimberg, J.A., Zandbergen, H.W.: Superlubricity of graphite. Phys. Rev. Lett. 92, 126101 (2004)CrossRefPubMedADSGoogle Scholar
  37. 37.
    Gupta, B.K., Malshe, A., Bhushan, B., Subramaniam, V.V.: Friction and wear properties of chemomechanically polished diamond films. J. Tribol. 116, 445–453 (1994)CrossRefGoogle Scholar
  38. 38.
    Lo, S.-W., Tsai, S.-D.: Real-time observation of the evolution of contact area under boundary lubrication in sliding contact. J. Tribol. 124, 229–238 (2002)CrossRefGoogle Scholar
  39. 39.
    Öttinger, H.C.: Beyond Equilibrium Thermodynamics. Wiley, New York (2005)CrossRefGoogle Scholar
  40. 40.
    Zwanzig, R.: Nonequilibrium Statistical Mechanics. Oxford University Press, Oxford (2001)Google Scholar
  41. 41.
    Grabert, H.; Projection Operator Techniques in Nonequilibrium Statistical Mechanics. Springer, Berlin (1982)Google Scholar
  42. 42.
    Svahn, F., Kassman-Rudolphi, Å., Hogmark, S.: On the effect of surface topography and humidity on lubricated running-in of a carbon based coating. Wear 261, 1237–1246 (2006)CrossRefGoogle Scholar
  43. 43.
    Kohlhoff, S., Gumbsch, P., Fischmeister, H.F.: Crack propagation in b.c.c. crystals studied with a combined finite-element and atomistic model. Philos. Mag. A 64, 851–878 (1991)CrossRefADSGoogle Scholar
  44. 44.
    Campañá, C., Müser, M.H.: Practical green’s function approach to the simulation of elastic semi-infinite solids. Phys. Rev. B 74, 075420 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Lars Pastewka
    • 1
    • 2
  • Stefan Moser
    • 1
  • Michael Moseler
    • 1
    • 2
    • 3
  1. 1.Fraunhofer-Institut für Werkstoffmechanik IWMFreiburgGermany
  2. 2.Physikalisches InstitutUniversität FreiburgFreiburgGermany
  3. 3.Freiburger MaterialforschungszentrumFreiburgGermany

Personalised recommendations