Tribology Letters

, Volume 38, Issue 1, pp 15–24

Size, Shape, and Elemental Composition of Airborne Wear Particles from Disc Brake Materials

Original Paper


During braking, both the rotor and pads experience wear, generating particles that may become airborne. In field tests, it is difficult to distinguish these particles from others in the surrounding environment, so it is preferable to use laboratory test stands to study the amount of airborne wear particles generated. The purpose of this work is to investigate the possibility of separate, capture, and analyze airborne wear particles generated by a disc brake in a disc brake assembly test stand. This test stand used allows the cleanliness of the air surrounding the test specimens to be controlled and thus the airborne portion of the wear particles to be studied separately. One pair each of low-metallic (LM) and non-asbestos organic (NAO) brake pads was tested against grey cast iron rotors. Before testing, the elemental contents of the brake materials were analyzed using glow discharge optical emission spectroscopy (GDOES). The concentration and size of airborne wear particles were measured online during testing. In addition, airborne wear particles were collected on filters during the tests and afterward analyzed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The analyzed wear particles contained elements such as iron, titanium, zinc, barium, manganese, and copper. Both the low-metallic and non-asbestos organic type of brake pads tested display a bimodal size distribution with peaks at 280 and 350 nm. Most of the airborne particles generated have a diameter smaller than 2.5 μm.


Wear Airborne particles Disc brake SEM EDX GDOES 


  1. 1.
    Katsouyanni, K., Touloumi, G., Samoli, E., Gryparis, A., Le Tertre, A., Monopolis, Y., Rossi, G., Zmirou, D.: Confounding and effect modification in the short-term effects of ambient particles on total mortality: results from 29 European cities within the APHEA2 project. Epidemiology 12, 521–531 (2001)CrossRefPubMedGoogle Scholar
  2. 2.
    Samet, J.M., Dominici, F., Curriero, F.C., Coursac, I., Zeger, S.L.: Fine particulate air pollution and mortality in 20 U.S. cities 1987–1994. N. Engl. J. Med. 343, 1742–1749 (2000)CrossRefPubMedGoogle Scholar
  3. 3.
    Pope, C.A., Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K., Thurston, G.D.: Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287, 1132–1141 (2002)CrossRefPubMedGoogle Scholar
  4. 4.
    Karlsson, H.: Particularly harmful particles: a study of airborne particles with a focus on genotoxicity and oxidative stress. Doctorial thesis, Department of Biosciences and Nutrition, Stockholm, Karolinska institutet, Solna, Sweden (2006)Google Scholar
  5. 5.
    Oberdörster, G., Maynard, A., Donaldson, K., Castranova, V., Fitzpatrick, J., Ausman, K., Carter, J., Karn, B., Kreyling, W., Lai, D., Olin, S., Monteiro-Riviere, N., Warheit, D., Yang, H.: Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part. Fibre Toxicol. 2, 1–35 (2005)CrossRefGoogle Scholar
  6. 6.
    Ghio, A.J., Silbajoris, R., Carson, J.L., Samet, J.M.: Biologic effects of oil fly ash. Environ. Health Persp. 110, 89–94 (2002)Google Scholar
  7. 7.
    Ghio, A.J.: Disruption of iron homeostasis and lung disease. Biochim. Biophys. Acta 1790, 731–739 (2009)PubMedGoogle Scholar
  8. 8.
    Querol, X., Alastuey, A., Ruiz, C.R., Artiñano, B., Hansson, H.C., Harrison, R.M., Buringh, E., Ten Brink, H.M., Lutz, M., Bruckmann, P., Straeh, P., Schneider, J.: Speciation and origin of PM10 and PM2.5 in selected European cities. Atmos. Environ. 38, 6547–6555 (2004)CrossRefGoogle Scholar
  9. 9.
    Gehrig, R., Hill, M., Buchmann, B.: Separate determination of PM10 emission factors of road traffic for tailpipe emissions and emissions from abrasion and resuspension processes. Int. J. Environ. Pollut. 22, 312–325 (2004)Google Scholar
  10. 10.
    Abu-Allaban, M., Gillies, J.A., Gertler, A.W., Clayton, R., Proffitt, D.: Tailpipe, resuspended road dust, and brake-wear emission factors from on-road vehicles. Atmos. Environ. 37, 5283–5293 (2003)CrossRefGoogle Scholar
  11. 11.
    Hjortenkrans, D., Bergbäck, B., Häggerud, A.: Metal emissions from brake linings and tires: case studies of Stockholm, Sweden 1995/1998 and 2005. Environ. Sci. Technol. 41, 5224–5230 (2007)CrossRefPubMedGoogle Scholar
  12. 12.
    Iijima, A., Sato, K., Yano, K., Kato, M., Kozawa, K., Furuta, N.: Emission factor for antimony in brake abrasion dust as one of the major atmospheric antimony sources. Environ. Sci. Technol. 42, 2937–2942 (2008)CrossRefPubMedGoogle Scholar
  13. 13.
    Furusjö, E., Sternbeck, J., Palm, A., Cousins, I.: PM10 source characterization at urban and highway roadside locations. Sci. Total Environ. 387, 206–219 (2007)CrossRefPubMedGoogle Scholar
  14. 14.
    Chan, D., Stachowiak, G.W.: Review of automotive brake friction materials. Proc. Inst. Mech. Eng. D J. Aut. Eng. 218, 953–966 (2004)CrossRefGoogle Scholar
  15. 15.
    Sanders, P.G., Xu, N., Dalka, T.M., Marico, M.: Airborne brake wear debris: size distributions, composition of dynamometer and vehicle test. Environ. Sci. Technol. 37, 4060–4069 (2003)CrossRefPubMedGoogle Scholar
  16. 16.
    Wahlström, J., Söderberg, A., Olander, L., Olofsson, U.: A disc brake test stand for measurements of airborne wear particles. Lubr. Sci 21, 241–252 (2009)CrossRefGoogle Scholar
  17. 17.
    von Uexküll, O., Skerfving, S., Doyle, R., Braungart, M.: Antimony in brake pads: a carcinogenic component? J. Cleaner Prod. 13, 19–31 (2003)CrossRefGoogle Scholar
  18. 18.
    Mosleh, M., Blau, P.J., Dumitrescu, D.: Characteristics and morphology of wear particles from laboratory testing of disc brake materials. Wear 256, 1128–1134 (2004)CrossRefGoogle Scholar
  19. 19.
    Peters, T.M., Ott, D., O’Shaughnessy, P.T.: Comparison of the Grimm 1.108 and 1.109 Portable Aerosol Spectrometer to the TSI 3321 Aerodynamic Particle Sizer for dry particles. Ann. Occup. Hyg. 50, 843–850 (2006)CrossRefPubMedGoogle Scholar
  20. 20.
    Liu, Y., Daum, P.H.: The effect of refractive index on size distributions and light scattering coefficients derived from optical particle counters. J. Aerosol Sci. 31, 945–957 (2000)CrossRefGoogle Scholar
  21. 21.
    Zhu, Y., Yu, N., Kuhn, T., Hinds, W.: Field comparison of P-Trak and condensation particle counters. Aerosol Sci. Tech. 40, 422–430 (2006)CrossRefGoogle Scholar
  22. 22.
    Cheng, Y.H.: Comparison of the TSI Model 8520 and Grimm Series 1.108 portable aerosol instruments used to monitor particulate matter in an iron foundry. J. Occup. Environ. Hyg. 5, 157–168 (2008)CrossRefPubMedGoogle Scholar
  23. 23.
    Bergseth, E.: Influence of surface topography and lubricant design in gear contacts. Licentiate thesis, Department of Machine Design, The Royal Institute of Technology, Stockholm (2009)Google Scholar
  24. 24.
    ISO 14707:2000: Glow discharge optical emission spectroscopy (GD-OES): introduction for use. International Organization for Standardization, Geneva (2001)Google Scholar
  25. 25.
    Riediker, M., Gasser, M., Perrenoud, A., Gehr, P., Rothen-Rutishauser, B.: A system to test the toxicity of brake wear particles. In: 12th International ETH-Conference on Combustion Generated Nanoparticles, 23–25 June 2008, Zurich, Switzerland (2008)Google Scholar
  26. 26.
    Wahlström J, Söderberg A, Olander L, Jansson A, Olofsson U. Airborne wear particles from passenger car disc brakes: a comparison of measurements from field tests, a disc brake assembly test stand, and a pin-on-disc machine. Proc. IMechE Part J J. Eng. Tribol. 223 (2009, in press)Google Scholar
  27. 27.
    Iijima, A., Sato, K., Yano, K., Taga, H., Kato, M., Kimura, H., Furuta, N.: Particle size and composition distribution analysis of automotive brake abrasion dusts for the evaluation of antimony sources of airborne particulate matter. Atmos. Environ. 41, 4908–4919 (2007)CrossRefGoogle Scholar
  28. 28.
    Thorpe, A., Harrison, R.M.: Sources and properties of non-exhaust particulate matter from road traffic: a review. Sci. Total Environ. 400, 270–282 (2008)CrossRefPubMedGoogle Scholar
  29. 29.
    Oberdörster, G.: Pulmonary effects of inhaled ultrafine particles. Int. Arch. Occup. Environ. Health 74, 1–8 (2001)CrossRefPubMedGoogle Scholar
  30. 30.
    Ingo, G.M., Uffizi, M.D., Falso, G., Bultrini, G., Padeletti, G.: Thermal and microchemical investigation of automotive brake pad wear residues. Thermochim. Acta 418, 61–68 (2004)CrossRefGoogle Scholar
  31. 31.
    Wahlström, J., Söderberg, A., Olander, L., Jansson, A., Olofsson, U.: A pin-on-disc simulation of airborne wear particles from disc brakes. J. Wear (2009, in press)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Machine DesignRoyal Institute of TechnologyStockholmSweden
  2. 2.Building Services EngineeringRoyal Institute of TechnologyStockholmSweden

Personalised recommendations