Advertisement

Tribology Letters

, Volume 38, Issue 1, pp 1–13 | Cite as

Molecular Deformation Mechanisms in UHMWPE During Tribological Loading in Artificial Joints

  • Mathias Christian Galetz
  • Uwe Glatzel
Original Paper

Abstract

No clear picture of the deformation and wear mechanisms of Ultra High Molecular Weight Polyethylene (UHMWPE) in artificial knee joints exists up to today. Tribological tests were conducted under relevant loads and the worn samples were extensively studied by XRD, DSC, Raman, and SEM. It was shown that stresses close to the surface in areas where high relative velocity in combination with high normal loads are applied are most effective in changing the microstructure and therefore most detrimental to produce wear particles, while in the depth the same deformed structure as under unidirectional cyclic loading is found. A model was proposed which reflects the deformation at different zones in the depth of a tribologically loaded UHMWPE sample. This model shows amazing analogy to the orientation of collagen fibrils in natural cartilage.

Keywords

Biotribology Wear mechanisms Fatigue analysis 

References

  1. 1.
    Kurtz, S.M.: The UHMWPE Handbook. Elsevier Academic Press, San Diego (2004)Google Scholar
  2. 2.
    Dowson, D., Taheri, S., Taheri, S., Wallbridge, N.C.: The role of counterface imperfections in the wear of polyethylene. Wear 119, 277–293 (1987)CrossRefGoogle Scholar
  3. 3.
    Turell, M.E., Friedlaender, G.E., Wang, A., Thornhill, T.S., Bellare, A.: The effect of counterface roughness on the wear of UHMWPE for rectangular wear paths. Wear 259, 984–991 (2005)CrossRefGoogle Scholar
  4. 4.
    Briscoe, B.J.: Friction and wear of organic solids and the adhesion model of friction. Philos. Mag. A 43, 511–527 (1981)CrossRefADSGoogle Scholar
  5. 5.
    Pooley, C.M., Tabor, D.: Friction, molecular structure. The behaviour of some thermoplastics. Proc R Soc Lond A 329, 251–274 (1972)CrossRefADSGoogle Scholar
  6. 6.
    Walker, P.S., Blunn, G.W., Lilley, P.A.: Wear testing of materials and surfaces for total knee replacement. J. Biomed. Res. 33, 159–175 (1998)CrossRefGoogle Scholar
  7. 7.
    Bartel, D.L., Rawlinson, J.J., Burstein, A.H., Ranawat, C.S., Flynn Jr, W.F.: Stresses in polyethylene components of contemporary total knee replacements. Clin. Orthop. 317, 76–82 (1995)PubMedGoogle Scholar
  8. 8.
    Kurtz, S.M., Pruitt, L., Jewett, C.W., Crawford, R.P., Crane, D.J., Edidin, A.A.: The yielding, plastic flow, and fracture behavior of ultra-high molecular weight polyethylene used in total joint replacements. Biomaterials 19, 1989–2003 (1998)CrossRefPubMedGoogle Scholar
  9. 9.
    Wang, A., Stark, C., Dumbleton, J.H.: Role of cyclic plastic deformation in the wear of UHMWPE acetabular cups. Biomed. Mater. Res. 29, 619–626 (1995)CrossRefGoogle Scholar
  10. 10.
    Hood, R.W., Wright, T.M., Burstein, A.H.: Retrieval analysis of total knee prostheses: a method and its application to 48 total condylar prostheses. J. Biomed. Mater. Res. 17, 829–842 (1983)CrossRefPubMedGoogle Scholar
  11. 11.
    Schmalzried, T.: Current concepts review—wear in total hip and knee replacements. J. Bone Joint Surg. 81, 115–136 (1999)PubMedGoogle Scholar
  12. 12.
    Kennedy, F.E., Currier, J.H., Plumet, S., Duda, J.L., Gestwick, D.P., Collier, J.P., Currier, B.H.: Contact fatigue failure of ultra-high molecular weight polyethylene bearing components of knee prostheses. J. Tribol. 122, 332–340 (2000)CrossRefGoogle Scholar
  13. 13.
    Wieleba, A.: The mechanism of tribological wear of thermoplastic materials. Arch. Civil Mech. Eng. 4, 185–191 (2007)Google Scholar
  14. 14.
    McKellop, H., Clarke, I., Markolf, K., Amstutz, H.: Friction and wear properties of polymer, metal and ceramic prosthetic joint materials evaluated on a multi-channel screening device. J. Biomed. Mater. Res. 15, 619–653 (1981)CrossRefPubMedGoogle Scholar
  15. 15.
    Chandrasekaran, M., Wei, L.Y., Venkateshwaran, K.K., Batchelor, A.W., Loh, N.L.: Tribology of UHMWPE tested against a stainless steel counterface in unidirectional sliding in presence of model synovial fluids: part 1. Wear 223, 13–21 (1998)CrossRefGoogle Scholar
  16. 16.
    Marcus, K., Ball, A., Allen, C.: The effect of grinding direction on the nature of the transfer layer formed during the sliding wear of ultrahigh molecular weight polyethylene against stainless steel. Wear 151, 2323–2336 (1991)CrossRefGoogle Scholar
  17. 17.
    Cho, H.J., Wei, W.J., Kao, H.C., Cheng, C.K.: Wear behavior of UHMWPE sliding on artificial hip arthroplasty materials. Mater. Chem. Phys. 88, 9–16 (2004)CrossRefGoogle Scholar
  18. 18.
    Lin, L., Argon, A.S.: Structure and plastic deformation of polyethylene. J. Mater. Sci. 29, 294–323 (1994)CrossRefADSGoogle Scholar
  19. 19.
    Oleinik, E.F.: Plasticity of semicrystalline flexible-chain polymers at the microscopic and mesoscopic levels. Polym. Sci. C 45, 17–117 (2003)Google Scholar
  20. 20.
    Peterson, J.M., Lindenmeyer, P.H.: Screw dislocations in anisotropic media. J. Appl. Phys. 37, 4051 (1966)CrossRefADSGoogle Scholar
  21. 21.
    Young, R.J., Bowden, P.B., Ritchie, J.M., Rider, J.G.: Deformation mechanism in oriented high density polyethylene. J. Mater. Sci. 8, 23–36 (1973)CrossRefADSGoogle Scholar
  22. 22.
    Pope, D.P., Keller, A.: Deformation of oriented polyethylene. J. Polym. Sci. Polym. Phys. Ed. 13, 533–566 (1975)CrossRefGoogle Scholar
  23. 23.
    Bartczak, Z., Argon, A.S., Cohen, R.E.: Deformation mechanisms and plastic resistance in single-crystal-textured high-density polyethylene. Macromolecules 25, 5036–5053 (1995)CrossRefADSGoogle Scholar
  24. 24.
    Bartczak, Z.: Evolution of the crystalline texture of high-density polyethylene during uniaxial compression. Macromolecules 25, 4692–4704 (1992)CrossRefADSGoogle Scholar
  25. 25.
    Patermann, J., Schultz, J.M.: Lamellar separation during the deformation of high-density polyethylene. J. Mater. Sci. 13, 50 (1978)CrossRefADSGoogle Scholar
  26. 26.
    Bowden, P.B., Young, R.J.: Deformation mechanisms in crystalline polymers. J. Mater. Sci. 9, 2034–2051 (1974)CrossRefADSGoogle Scholar
  27. 27.
    Friedrich, K.: Crazes and shear bands in semi-crystalline thermoplastics. Adv. Polym. Sci. 52, 225–274 (1983)CrossRefGoogle Scholar
  28. 28.
    Predecki, P., Statton, W.O.: Dislocations caused by chain ends in crystalline polymers. J. Appl. Phys. 37, 4053–4059 (1966)CrossRefADSGoogle Scholar
  29. 29.
    Kausch, H.H.: Crazing in polymers. In: Pae, K.A. (ed.) Advances in Polymer Science and Engineering, pp. 207–223, pp. 207–223. Springer, New York (1972)Google Scholar
  30. 30.
    Paul, J.P.: Loading on normal hip and knee joints and on joint replacements. In: Schaldach, M., Hohmann, D. (eds.) Advances in artificial hip and knee joint technology, pp. 53–70. Springer, Berlin (1976)Google Scholar
  31. 31.
    Imado, K., Miura, A., Nagatoshi, M., Kido, Y., Miyagawa, H., Higaki, H.: A study of contact temperature due to frictional heating of UHMWPE. Tribol. Lett. 16, 265–273 (2004)CrossRefGoogle Scholar
  32. 32.
    Galetz, M.C., Goetz, C., Adam, P., Glatzel, U.: Hysteretic heating during cyclic loading of ultra high molecular weight polyethylene. Adv. Eng. Mat. 9, 1089–1096 (2007)CrossRefGoogle Scholar
  33. 33.
    Wang, A., Stark, C., Dumbleton, J.H.: Mechanistic and morphological origins of ultra-high molecular weight polyethylene wear debris in total joint replacement prostheses. Proc. Inst. Mech. Eng. H 210, 141–155 (1996)PubMedGoogle Scholar
  34. 34.
    Bragdon, C.R., O’Connor, O.D., Lowenstein, J.D., Jasty, M., Syniuta, W.D.: The importance of multidirectional motion on the wear of polyethylene. Proc. Inst. Mech. Eng. H 210, 157–166 (1996)PubMedGoogle Scholar
  35. 35.
    Saikko, V., Ahlroos, T., Calonius, O.: A three-axis knee wear simulator with ball-on-flat contact. Wear 249, 310–315 (2001)CrossRefGoogle Scholar
  36. 36.
    Naylor, K.L., Phillips, P.J.: Optimization of permanganic etching of polyethylenes for scanning electron microscopy. J. Polym. Sci. Polym. Phys. Ed. 21, 2011–2026 (1983)CrossRefGoogle Scholar
  37. 37.
    Murthy, N.S., Bednarczyk, C., Minor, H.: Depth-profiles of structure in single- and multilayered commercial polymer films using grazing-incidence X-ray diffraction. Polymer 41, 277–284 (2000)CrossRefGoogle Scholar
  38. 38.
    Xie, X.L., Aloys, K., Zhou, X.P., Zeng, F.D.: Ultrahigh molecular mass polyethylene/carbon nanotube composite—crystallization and melting properties. J. Therm. Anal. Calorim. 74, 317–323 (2003)CrossRefGoogle Scholar
  39. 39.
    Zerbi, G., Gallino, G., Del Fanti, N., Baini, L.: Structural depth profiling in polyethylene films by multiple internal reflection infra-red spectroscopy. Polymer 30, 2324–2327 (1989)CrossRefGoogle Scholar
  40. 40.
    Strobl, G.R., Hagedorn, W.: Raman spectroscopic method for determining the crystallinity of polyethylene. J. Polym. Sci. Polym. Phys. Ed. 16, 1181–1193 (1978)CrossRefGoogle Scholar
  41. 41.
    Choi, C., Bailey, L., Rudin, A., Pintar, M.M.: Quantitative analysis of three phases of high-density polyethylene with 2D time-domain proton NMR. J. Polym. Sci. B 35, 2551–2558 (1997)CrossRefGoogle Scholar
  42. 42.
    Mandelkern, L., Alamo, R.G., Kennedy, M.A.: The interphase thickness of linear polyethylene. Macromolecules 23, 4721–4723 (1990)CrossRefADSGoogle Scholar
  43. 43.
    Fagnano, C., Rossi, M., Porter, R.S., Ottani, S.: A study on solid state drawn fibers of polyethylene by confocal Raman microspectrometry: evaluation of the orientation profiles of amorphous and crystalline phases across the fiber section. Polymer 42, 5871–5883 (2001)CrossRefGoogle Scholar
  44. 44.
    Tamura, J., Clarke, I.C., Kawanabe, K., Akagi, M., Good, V.D., Williams, P.A., Masaoka, T., Schroeder, D., Oonishi, H.: Micro-wear on the UHMWPE tibial inserts in the total knee joint simulation. J. Biomed. Mater. Res. 612, 218–225 (2002)CrossRefGoogle Scholar
  45. 45.
    Bartczak, Z.: Deformation of high-density polyethylene produced by rolling with side constraints. I. Orientation behavior. J. Appl. Polym. Sci. 86, 1396–1404 (2002)CrossRefGoogle Scholar
  46. 46.
    Galetz, M.C., Dietel, S., Theile, B., Glatzel, U.: Potential for adhesive wear in friction couples of UHMWPE running against oxidized zirconium, titanium nitride coatings and cobalt-chromium alloys. J. Biomed. Mater. Res. B (in press)Google Scholar
  47. 47.
    Dharmastiti, R., Barton, D.C., Fisher, J., Edidin, A., Kurtz, S.M.: The wear of oriented UHMWPE under isotropically rough and scratched counterface test conditions. Biomed. Mater. Eng. 11, 241–256 (2001)PubMedGoogle Scholar
  48. 48.
    Wang, A., Edwards, B., Yau, S.S., Polineni, V.K., Essner, A., Klein, R., Sun, D.C., Stark, C., Dumbleton, J.H.: Orientation softening as a mechanism of ultra-high molecular weight polyethylene (UHMWPE) wear in artificial hip and knee joints. In: Gsell, R.A., Stein, H.L., Ploskonda, J.J. (eds.) Characterization and Properties of Ultra-High Molecular Weight Polyethylene, pp. 56–79. ASTM, West Conshohocken, PA (1998)Google Scholar
  49. 49.
    Galetz, M.C., Uth, T., Wimmer, M.L., Adam, P., Glatzel, U.: Determination of the temperature rise within UHMWPE tibial components during tribological loading. Acta Biomaterialia 6, 552–562 (2010)CrossRefPubMedGoogle Scholar
  50. 50.
    Peterlin, A.: Molecular model of drawing polyethylene and polypropylene. J. Mater. Sci. 6, 490–508 (1971)CrossRefADSGoogle Scholar
  51. 51.
    Plumet, S., Duda, J.L., Gestwick, D.P., Collier, J.P., Currier, B.H.: Contact fatigue failure of ultra-high molecular weight polyethylene bearing components of knee prostheses. J. Tribol. 122, 332–340 (2000)CrossRefGoogle Scholar
  52. 52.
    Galeski, A., Bartczak, Z., Argon, A.S., Cohen, R.E.: Morphological alterations during texture-producing plastic plane strain compression of high-density polyethylene. Macromolekules 25, 5705–5718 (1992)CrossRefADSGoogle Scholar
  53. 53.
    Benninghoff, A.: Form und bau der gelenkknorpel in ihren beziehungen zur funktion. Z. Zellforsch. Mikrosk. Anat. 2, 814 (1925)CrossRefGoogle Scholar
  54. 54.
    Stachowiak, G.W., Batchelor, A.W.: Engineering Tribology. Butterworth Heinemann, Woburn (2001)Google Scholar
  55. 55.
    Weick, B.L., Furey, M.J., Newman, H., Kajdas, C., Hellgeth, J.W.: Tribochemical change of nylon 6, 6 and nylon 6, 6/glass rubbed against sapphire. Tribol. Trans. 37, 129–137 (1994)CrossRefGoogle Scholar
  56. 56.
    Marcellan, A., Bondil, O., Boué, C., Chateauminois, A.: Third body effects in the wear of polyamide: micro-mechanisms and wear particles analysis. Wear 266, 1013–1020 (2009)CrossRefGoogle Scholar
  57. 57.
    Ohta, M., Hyon, S.H., Oka, M., Tsutsumi, S.: Wear resistance of lightly cross-linked ultrahigh-molecular-weight polyethylene crystallized from the melt under uniaxial compression. Wear 225–229, 312–318 (1999)CrossRefGoogle Scholar
  58. 58.
    Muratoglu, O.K., Bragdon, C.R., O’Connor, D.O., Jasty, M., Harris, H.H., Gul, R., McGarry, F.: Unified wear model for highly crosslinked ultra-high molecular weight polyethylenes (UHMWPE). Biomaterials 20, 1463–1470 (1999)CrossRefPubMedGoogle Scholar
  59. 59.
    Rosenberg, C.H.T.: Verschleißverhalten von polyäthylen beim künstlichen kniegelenkersatz, online Dissertation, Aachen (2003)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Metals & AlloysUniversity of BayreuthBayreuthGermany

Personalised recommendations