Advertisement

Tribology Letters

, Volume 37, Issue 3, pp 541–552 | Cite as

Macrotribological Studies of Poly(L-lysine)-graft-Poly(ethylene glycol) in Aqueous Glycerol Mixtures

  • Prathima C. Nalam
  • Jarred N. Clasohm
  • Alireza Mashaghi
  • Nicholas D. Spencer
Original Paper

Abstract

We have investigated the tribological properties of surfaces with adsorbed poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) sliding in aqueous glycerol solutions under different lubrication regimes. Glycerol is a polar, biocompatible liquid with a significantly higher viscosity than that of water. Macrotribological performance was investigated by means of pin-on-disk and mini-traction-machine measurements in glycerol-PLL-g-PEG-aqueous buffer mixtures of varying compositions. Adsorption studies of PLL-g-PEG from these mixtures were conducted with the quartz-crystal-microbalance technique. The enhanced viscosity of the glycerol-containing lubricant reduces the coefficient of friction due to increased hydrodynamic forces, leading to a more effective separation of the sliding partners, while the presence of hydrated polymer brushes at the interface leads to an entropically driven repulsion, which also helps mitigate direct asperity–asperity contact between the solid surfaces under boundary-lubrication conditions. The combination of polymer layers on surfaces with aqueous phases of enhanced viscosity thus enables the friction to be reduced by several orders of magnitude, compared to the behavior of pure water, over a large range of sliding speeds. The individual contributions of the polymer and the aqueous glycerol solutions in reducing the friction have been studied across different lubrication regimes.

Keywords

Boundary lubrication Aqueous lubrication Glycerol Polymer brushes Viscosity 

Notes

Acknowledgments

The financial assistance of the European Science Foundation, through their Eurocores (FANAS) program is gratefully acknowledged. We would also like to thank Dr. Rowena Crockett of EMPA, Dübendorf, Switzerland for allowing us to use her mini-traction-machine and Prof. Hugh Spikes of Imperial College, London for his valuable suggestions.

References

  1. 1.
    Granick, S., Kumar, S.K., Amis, E.J., Antonietti, M., Balazs, A.C., Chakraborty, A.K., Grest, G.S., Hawker, C., Janmey, P., Kramer, E.J., Nuzzo, R., Russell, T.P., Safinya, C.R.: Macromolecules at surfaces: research challenges and opportunities from tribology to biology. J. Polym. Sci. B 41, 2755–2793 (2003). doi: 10.1002/Polb.10669 CrossRefGoogle Scholar
  2. 2.
    Klein, J., Kumacheva, E., Mahalu, D., Perahia, D., Fetters, L.J.: Reduction of frictional forces between solid-surfaces bearing polymer brushes. Nature 370, 634–636 (1994). doi: 10.1038/370634a0 CrossRefADSGoogle Scholar
  3. 3.
    Grest, G.S.: Interfacial sliding of polymer brushes a molecular dynamics simulation. Phys. Rev. Lett. 76, 4979–4982 (1996). doi: 10.1103/PhysRevLett.76.4979 CrossRefPubMedADSGoogle Scholar
  4. 4.
    Klein, J., Perahia, D., Warburg, S.: Forces between polymer-bearing surfaces undergoing shear. Nature 352, 143–145 (1991). doi: 10.1038/352143a0 CrossRefADSGoogle Scholar
  5. 5.
    Klein, J., Kamiyama, Y., Yoshizawa, H., Israelachvili, J.N., Fredrickson, G.H., Pincus, P., Fetters, L.J.: Lubrication forces between surfaces bearing polymer brushes. Macromolecules 26, 5552–5560 (1993). doi: 10.1021/ma00073a004 CrossRefADSGoogle Scholar
  6. 6.
    Heuberger, M., Drobek, T., Spencer, N.D.: Interaction forces and morphology of a protein-resistant poly(ethylene glycol) layer. Biophys. J. 88, 495–504 (2005). doi: 10.1529/Biophysj.104.045443 CrossRefPubMedADSGoogle Scholar
  7. 7.
    Irfachsyad, D., Tildesley, D., Malfreyt, P.: Dissipative particle dynamics simulation of grafted polymer brushes under shear. Phys. Chem. Chem. Phys. 4, 3008–3015 (2002). doi: 10.1039/B110738k CrossRefGoogle Scholar
  8. 8.
    Chen, M., Briscoe, W.H., Armes, S.P., Klein, J.: Lubrication at physiological pressures by polyzwitterionic brushes. Science 323, 1698–1701 (2009). doi: 10.1126/Science.1169399 CrossRefPubMedADSGoogle Scholar
  9. 9.
    Lee, S., Spencer, N.D.: Materials science—sweet, hairy, soft, and slippery. Science 319, 575–576 (2008). doi: 10.1126/Science.1153273 CrossRefPubMedGoogle Scholar
  10. 10.
    Pasche, S., Textor, M., Meagher, L., Spencer, N.D., Griesser, H.J.: Relationship between interfacial forces measured by colloid-probe atomic force microscopy and protein resistance of poly(ethylene glycol)-grafted poly(l-lysine) adlayers on niobia surfaces. Langmuir 21, 6508–6520 (2005). doi: 10.1021/La050386x CrossRefPubMedGoogle Scholar
  11. 11.
    Müller, M., Lee, S., Spikes, H.A., Spencer, N.D.: The influence of molecular architecture on the macroscopic lubrication properties of the brush-like co-polyelectrolyte poly(l-lysine)-g-poly(ethylene glycol) (PLL-g-PEG) adsorbed on oxide surfaces. Tribol. Lett. 15, 395–405 (2003). doi: 10.1023/B:TRIL.0000003063.98583.bb zbMATHCrossRefGoogle Scholar
  12. 12.
    Lee, S., Müller, M., Ratoi-Salagean, M., Voros, J., Pasche, S., De Paul, S.M., Spikes, H.A., Textor, M., Spencer, N.D.: Boundary lubrication of oxide surfaces by poly(l-lysine)-g-poly(ethylene glycol) (PLL-g-PEG) in aqueous media. Tribol. Lett. 15, 231–239 (2003). doi: 10.1023/A:1024861119372 CrossRefGoogle Scholar
  13. 13.
    Yan, X.P., Perry, S.S., Spencer, N.D., Pasche, S., De Paul, S.M., Textor, M., Lim, M.S.: Reduction of friction at oxide interfaces upon polymer adsorption from aqueous solutions. Langmuir 20, 423–428 (2004). doi: 10.1021/La035785b zbMATHCrossRefPubMedGoogle Scholar
  14. 14.
    Drobek, T., Spencer, N.D.: Nanotribology of surface-grafted PEG layers in an aqueous environment. Langmuir 24, 1484–1488 (2008). doi: 10.1021/La702289n CrossRefPubMedGoogle Scholar
  15. 15.
    Lee, S., Muller, M., Heeb, R., Zurcher, S., Tosatti, S., Heinrich, M., Amstad, F., Pechmann, S., Spencer, N.D.: Self-healing behavior of a polyelectrolyte-based lubricant additive for aqueous lubrication of oxide materials. Tribol. Lett. 24, 217–223 (2006). doi: 10.1007/S11249-006-9121-9 CrossRefGoogle Scholar
  16. 16.
    Raviv, U., Tadmor, R., Klein, J.: Shear and frictional interactions between adsorbed polymer layers in a good solvent. J. Phys. Chem. B 105, 8125–8134 (2001). doi: 10.1021/Jp0041860 CrossRefGoogle Scholar
  17. 17.
    Müller, M.T., Yan, X.P., Lee, S.W., Perry, S.S., Spencer, N.D.: Lubrication properties of a brushlike copolymer as a function of the amount of solvent absorbed within the brush. Macromolecules 38, 5706–5713 (2005). doi: 10.1021/Ma0501545 CrossRefADSGoogle Scholar
  18. 18.
    Ross, R.S., Pincus, P.: The polyelectrolyte brush—poor solvent. Macromolecules 25, 2177–2183 (1992). doi: 10.1021/ma00034a018 CrossRefADSGoogle Scholar
  19. 19.
    Soga, K.G., Guo, H., Zuckermann, M.J.: Polymer brushes in a poor solvent. Europhys. Lett. 29, 531–536 (1995)CrossRefADSGoogle Scholar
  20. 20.
    Auroy, P., Auvray, L.: Collapse-stretching transition for polymer brushes—preferential solvation. Macromolecules 25, 4134–4141 (1992). doi: 10.1021/ma00042a014 CrossRefADSGoogle Scholar
  21. 21.
    Roters, A., Schimmel, M., Ruhe, J., Johannsmann, D.: Collapse of a polymer brush in a poor solvent probed by noise analysis of a scanning force microscope cantilever. Langmuir 14, 3999–4004 (1998). doi: 10.1021/la971409d CrossRefGoogle Scholar
  22. 22.
    Müller, M.T., Yan, X.P., Lee, S.W., Perry, S.S., Spencer, N.D.: Preferential solvation and its effect on the lubrication properties of a surface-bound, brushlike copolymer. Macromolecules 38, 3861–3866 (2005). doi: 10.1021/Ma047468x CrossRefADSGoogle Scholar
  23. 23.
    Raviv, U., Klein, J.: Fluidity of bound hydration layers. Science 297, 1540–1543 (2002). doi: 10.1126/science.1074481 CrossRefPubMedADSGoogle Scholar
  24. 24.
    Carslaw, H.S., Jaeger, J.C.: Conduction of heat in solids, 2nd edn. Oxford University Press, London (1959)Google Scholar
  25. 25.
    Lee, S., Spencer, N.D.: Aqueous lubrication of polymers: Influence of surface modification. Tribol. Int. 38, 922–930 (2005). doi: 10.1016/J.Triboint.2005.07.017 CrossRefGoogle Scholar
  26. 26.
    Hartung, W., Rossi, A., Lee, S.W., Spencer, N.D.: Aqueous lubrication of SiC and Si3N4 ceramics aided by a brush-like copolymer additive, poly(l-lysine)-graft-poly(ethylene glycol). Tribol. Lett. 34, 201–210 (2009). doi: 10.1007/S11249-009-9424-8 CrossRefGoogle Scholar
  27. 27.
    Erdemir, A., Martin, J.-M.: Superlubricity. Elsevier, Amsterdam (2007)Google Scholar
  28. 28.
    Hamrock, B.J, Dowson, D.: Minimum film thickness in elliptical contacts for different regimes of fluid-film lubrication. In: Proceedings of the 5th Leeds-Lyon Symposium on Tribology, pp 22–27, 1979Google Scholar
  29. 29.
    Esfahanian, M., Hamrock, B.J.: Fluid-film lubrication regimes revisited. Tribol. Trans. 34, 628–632 (1991). doi: 10.1080/10402009108982081 CrossRefGoogle Scholar
  30. 30.
    Totten, G.E.: Handbook of Hydraulic Fluid Technology. Marcel Dekker, Inc, New York (2000)Google Scholar
  31. 31.
    Ohno, N., Ziaur Rahman, M.D., Tsutsumi, H.: High-pressure short time behavior of traction fluids. Lubr. Sci. 18, 25–36 (2006). doi: 10.1002/1s.3 CrossRefGoogle Scholar
  32. 32.
    Stachowiak, G.W., Batchelor, A.W.: Engineering Tribology. Elsevier, Amsterdam (1993)Google Scholar
  33. 33.
    Lide, D.R.: Handbook of Chemistry and Physics, 20th edn. Chemical Rubber Publishing Co, Cleveland (1948)Google Scholar
  34. 34.
    Corradini, F., Marchetti, A., Tagliazucchi, M., Tassi, L., Tosi, G.: Thermodynamics of viscous-flow in ethane-1, 2-diol+water binary-mixtures. Aust. J. Chem. 48, 103–113 (1995)CrossRefGoogle Scholar
  35. 35.
    Smeeth, M., Spikes, H.A.: The influence of slide/roll ratio on the film thickness of an EHD contact operating within the mixed lubrication regime. In: Proceedings of the 22nd Leeds-Lyon Symposium on Tribology, pp 695–703 (1996)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Prathima C. Nalam
    • 1
  • Jarred N. Clasohm
    • 1
  • Alireza Mashaghi
    • 1
  • Nicholas D. Spencer
    • 1
  1. 1.Laboratory for Surface Science and Technology, Department of MaterialsETH ZurichZurichSwitzerland

Personalised recommendations