Tribology Letters

, Volume 37, Issue 2, pp 361–373 | Cite as

Influence of Surface Roughness, Material and Climate Conditions on the Friction of Human Skin

  • C. P. HendriksEmail author
  • S. E. Franklin
Original Paper


The gliding comfort and performance of personal care and wellness products is strongly influenced by the sliding friction behaviour of human skin. In the open literature, most of the results on skin friction are related to the performance of cosmetic products or to the slip and grip properties of surfaces. Experiments were usually carried out on the forearm or the fingertips. The influence of the surface roughness and the material of engineering surfaces have received little attention so far, especially not in sliding contact with the skin of the cheek, or under different climate conditions. A custom-built rotating ring device was used to study the influence of the probe surface roughness (R a = 0.1–10 μm), the probe material (metals, plastics), the climate conditions (21–29 °C, 37–92% RH) and skin hydration on the frictional behaviour of the skin on the cheek and the forearm. The amplitude of the surface roughness has a dominant influence on the friction behaviour: the smoother the surface, the higher the friction. Differences can be as large as a factor 5–10, especially in the range R a < 1 μm. The probe material itself has no significant influence; except for PFTE which reduces the friction by approximately 25% compared to the other materials. In a humid climate, the skin becomes hydrated and the friction is twice as high as in a dry climate. The effect of skin hydration is smaller on the cheek than on the forearm, probably due to the presence of beard stubbles. A simple friction model for human skin is presented, based on adhesion friction, contact mechanics of rough surfaces and the interfacial shear stress of thin organic films. The model explains the effects of the probe surface roughness and skin compliance. Quantitative application of the model indicates that the biomechanical indentation and shearing behaviour of the stratum corneum is influenced by the same physical process, i.e. the intercellular bonding strength of the corneocytes.


Biotribology Friction mechanisms Surface roughness 



Many thanks to Bernadette Hall, Vincent Simonetti and Mo Salih for carrying out friction tests on volunteers, to Ben Marshall for the surface roughness measurements, surface energy measurements and assistance with the data processing, to Agnieszka Kochmanska for the materials analysis, and to Remco Woen for the statistical analysis.


  1. 1.
    Tomlinson, S.E., Lewis, R., Carré, M.J.: Review of the frictional properties of finger-object contact when gripping. Proc. IMechE Part J.: J. Eng. Tribol. 221, 841–850 (2007)Google Scholar
  2. 2.
    Derler, S., Gerhardt, L.-C., Lenz, A., Bertaux, E., Hadad, M.: Friction of human skin against smooth and rough glass as a function of the normal load. Tribol. Int. 42, 1565–1574 (2009)CrossRefGoogle Scholar
  3. 3.
    O’Meara, D.M., Smith, R.M.: Static friction properties between human palmar skin and five grabrail materials. Ergonomics 44(11), 973–988 (2001)CrossRefPubMedGoogle Scholar
  4. 4.
    Sasada, T.: The friction of human skin. In: 21st Biotribology Symposium, JSME, Fukuoka, pp. 46–52 (2000)Google Scholar
  5. 5.
    Dinc, O.S., Ettles, C.M., Calabrese, S.J., Scarton, H.A.: Some parameters affecting tactile friction. J. Tribol. 113, 512–517 (1991)CrossRefGoogle Scholar
  6. 6.
    Tomlinson, S.E., Lewis, R., Carré, M.J.: The effect of normal force and roughness on friction in human finger contact. Wear 267, 1311–1318 (2009)CrossRefGoogle Scholar
  7. 7.
    Derler, S., Huber, R., Feuz, H.-P., Hadad, M.: Influence of surface microstructure on the sliding friction of plantar skin against hard substrates. Wear 267, 1281–1288 (2009)CrossRefGoogle Scholar
  8. 8.
    Gee, M.G., Tomlins, P., Calver, A., Darling, R.H., Rides, M.: A new friction measurement system for the frictional component of touch. Wear 259, 1437–1442 (2005)CrossRefGoogle Scholar
  9. 9.
    El-Shimi, A.F.: In vivo skin friction measurements. J. Soc. Cosmet. Chem. 28, 37–51 (1977)Google Scholar
  10. 10.
    Sivamani, R.K., Wu, G., Maibach, H.I., Gitis, N.V.: Tribological studies on skin: measurement of the coefficient of friction. In: Serup, J., Jemec, G.B.E., Grove, G.L. (eds.) Handbook of non invasive methods and the skin, pp. 215–224. CRC Press, Boca Raton (2006)Google Scholar
  11. 11.
    Loden, M.: Biophysical properties of dry atopic and normal skin with special reference to effects of skin care products. Acta Derm. Venereol. Suppl. 192, 1–48 (1995)Google Scholar
  12. 12.
    Loden, M., Olsson, H., Axell, T., Linde, Y.W.: Friction, capacitance and transepidermal water loss (TEWL) in dry atopic and normal skin. Br. J. Dermatol. 126, 137–141 (1992)CrossRefPubMedGoogle Scholar
  13. 13.
    Roberts, M.: Efficacy testing of cosmetics and toiletries. In: Butler, H. (ed.) Poucher’s Perfumes, Cosmetics and Soaps, pp. 555–599. Kluwer Academic Publishers, Dordrecht (2000)Google Scholar
  14. 14.
    Sivamani, R.K., Wu, G.C., Gitis, N.V., Maibach, H.I.: Tribological testing of skin products: gender, age, and ethnicity on the volar forearm. Skin Res. Technol. 9, 299–305 (2003)CrossRefPubMedGoogle Scholar
  15. 15.
    Sivamani, R.K., Wu, G., Gitis, N.V., Maibach, H.I.: Tribological studies on skin: measurement of the coefficient of friction. In: Loden, M., Maibach, H.I. (eds.) Dry Skin and Moisturizers—Chemistry and Function, pp. 431–441. CRC Press, Boca Raton (2005)Google Scholar
  16. 16.
    Ramalho, A., Silva, C.L., Pais, A.A.C.C., Sousa, J.J.S.: In vivo friction study of human skin: influence of moisturizers on different anatomical sites. Wear 263, 1044–1049 (2007)CrossRefGoogle Scholar
  17. 17.
    Sivamani, R.K., Goodman, J., Gitis, N.V., Maibach, H.I.: Friction coefficient of skin in real time. Skin Res. Technol. 9, 235–239 (2003)CrossRefPubMedGoogle Scholar
  18. 18.
    Gitis, N., Sivamani, R.: Tribometrology of skin. Tribol. Trans. 47(4), 461–469 (2004)CrossRefGoogle Scholar
  19. 19.
    Egawa, M., Oguri, M., Hirao, T., Takahashi, M., Miyakawa, M.: The evaluation of skin friction using a frictional feel analyzer. Skin Res. Technol. 8, 41–51 (2002)CrossRefPubMedGoogle Scholar
  20. 20.
    Nakajima, K., Narasaka, H.: Evaluation of skin surface associated with morphology and coefficient of friction. Int. J. Cosmet. Sci. 15, 135–151 (1993)Google Scholar
  21. 21.
    Elsner, P., Wilhelm, D., Maibach, H.I.: Frictional properties of human forearm and vulvar skin: influence of age and correlation with transepidermal water loss and capacitance. Dermatologica 181, 88–91 (1990)CrossRefPubMedGoogle Scholar
  22. 22.
    Cua, A.B., Wilhelm, K.-P., Maibach, H.I.: Frictional properties of human skin: relation to age, sex and anatomical region, stratum corneum hydration and transepidermal water loss. Br. J. Dermatol. 123, 473–479 (1990)CrossRefPubMedGoogle Scholar
  23. 23.
    Gerhardt, L.-C., Strässle, V., Lenz, A., Spencer, N.D., Derler, S.: Influence of epidermal hydration on the friction of human skin against textiles. J. R. Soc. Interface 5, 1317–1328 (2008)CrossRefPubMedGoogle Scholar
  24. 24.
    Egawa, M., Oguri, M., Kuwahara, T., Takahashi, M.: Effect of exposure of human skin to a dry environment. Skin Res. Technol. 8, 212–218 (2002)CrossRefPubMedGoogle Scholar
  25. 25.
    Sulzberger, M.B., Cortese, T.A., Fishman, L., Wiley, H.S.: Studies on blisters produced by friction. J. Invest. Dermatol. 47, 456–465 (1966)PubMedGoogle Scholar
  26. 26.
    Comaish, S., Bottoms, E.: The skin and friction: deviations from amonton’s laws, and the effects of hydration and lubrication. Br. J. Dermatol. 84, 37–43 (1971)CrossRefPubMedGoogle Scholar
  27. 27.
    Jordan, R., Streckert, G.: Beeinflussing der Glatte der haut durch Baden. Artztliche Kosmetologie 11, 260–266 (1981)Google Scholar
  28. 28.
    Roberts, A.D., Brackley, C.A.: Friction of surgeons’ gloves. J. Phys. D.: Appl. Phys. 25, A28–A32 (1992)CrossRefADSGoogle Scholar
  29. 29.
    Adams, M.J., Gorman, D.M., Johnson S.A.: The friction and lubrication of keratinous biosubstrates. In: Proceedings of the 5th Royal Society—Unilever Indo—UK Forum in Materials Science and Engineering, pp. 277–294. Imperial College Press, Mysore, India (1999)Google Scholar
  30. 30.
    Gerrard, W.: Friction and other measurements. Bioeng. Skin 3, 123–137 (1987)Google Scholar
  31. 31.
    Bucholz, B., Frederick, L.J., Armstrong, T.J.: An investigation of human palmar skin and the effects of materials, pinch force and moisture. Ergonomics 31(3), 317–325 (1988)CrossRefGoogle Scholar
  32. 32.
    Highley, D.R., Coomey, M., DenBeste, M., Wolfram, L.J.: Frictional properties of skin. J. Invest. Dermatol. 69, 303–305 (1977)CrossRefPubMedGoogle Scholar
  33. 33.
    Nacht, S., Close, J.-A., Yeung, D., Gans, E.H.: Skin friction coefficient: changes induced by skin hydration and emollient application and correlation with perceived skin feel. J. Soc. Cosmet. Chem. 32, 55–65 (1981)Google Scholar
  34. 34.
    Adams, M.J., Briscoe, B.J., Johnson, S.A.: Friction and lubrication of human skin. Tribol. Lett. 26(3), 239–253 (2007)CrossRefGoogle Scholar
  35. 35.
    Johnson, S.A., Gorman, D.M., Adams, M.J., Briscoe, B.J.: The friction and lubrication of human stratum corneum. In: Proceedings of the 19th Leeds–Lyon Symposium on Tribology, pp. 663–672 (1993)Google Scholar
  36. 36.
    Lewis, R., Menardi, C., Yoxall, A., Langley, J.: Finger friction: grip and opening packaging. Wear 203, 1124–1132 (2007)CrossRefGoogle Scholar
  37. 37.
    Elkhyat, A., Courderot-Masuyer, C., Gharbi, T., Humbert, P.: Influence of the hydrophobic and hydrophilic characteristics of sliding and slider surfaces on friction coefficient: in vivo human skin friction comparison. Skin Res. Technol. 10, 215–221 (2004)CrossRefPubMedGoogle Scholar
  38. 38.
    Kwiatkowska, M., Franklin, S.E., Hendriks, C.P., Kwiatkowski, K.: Friction and deformation behaviour of human skin. Wear 267, 1264–1273 (2009)CrossRefGoogle Scholar
  39. 39.
    Moore, D.F.: The Friction and Lubrication of Elastomers. Pergamon Press, Oxford (1972)Google Scholar
  40. 40.
    Lambers, H., Pronk, H.: Biophysical methods for stratum corneum characterization. In: Förster, T. (ed.) Cosmetic Science and Technology Series, vol. 24. Cosmetic Lipids and the Skin Barrier, pp. 185–226. Marcel Dekker Inc., New York (2002)Google Scholar
  41. 41.
    Clarys, P., Barel, A.: Quantitative evaluation of skin surface lipids. Clin. Dermatol. 13, 307–321 (1995)CrossRefPubMedGoogle Scholar
  42. 42.
    Freinkel, R.K., Woodley, D.T.: The biology of the skin. The Parthenon Publishing Group, New York (2001)Google Scholar
  43. 43.
    Naylor, P.F.D.: The skin surface and friction. Br. J. Dermatol. 67, 239–248 (1955)CrossRefPubMedGoogle Scholar
  44. 44.
    Schallamach, A.: How does rubber slide? Wear 17, 301–312 (1971)CrossRefGoogle Scholar
  45. 45.
    Ogilvy, J.A.: Numerical simulation of friction between contacting rough surfaces. J. Phys. D.: Appl. Phys. 24, 2098–2109 (1991)CrossRefADSGoogle Scholar
  46. 46.
    Koudine, A.A., Barquins, M., Anthoine, P.H., Aubert, L., Lévêque, J.-L.: Frictional properties of skin: proposal of a new approach. Int. J. Cosmet. Sci. 22, 11–20 (2000)CrossRefPubMedGoogle Scholar
  47. 47.
    Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)zbMATHGoogle Scholar
  48. 48.
    Bhushan, B.: Principles and Applications of Tribology. Wiley, New York (1999)Google Scholar
  49. 49.
    Briscoe, B.J., Tabor, D.: Shear properties of thin polymeric films. J. Adhes. 9, 145–155 (1978)CrossRefGoogle Scholar
  50. 50.
    Childs, T.H.C., Henson, B.: Human tactile perception of screen-printed surfaces: self-report and contact mechanics experiments. Proc. IMechE J.: Eng. Tribol. 221, 1–15 (2007)Google Scholar
  51. 51.
    van Duzee, B.F.: The influence of water content, chemical treatment and temperature on the rheological properties of stratum corneum. J. Invest. Dermatol. 71, 140–144 (1978)CrossRefPubMedGoogle Scholar
  52. 52.
    Tagami, H.: Impedance measurement for evaluation of the hydration state of the skin surface. In: Lévêque, J.L. (ed.) Cutaneous Investigation in Health and Disease, pp. 79–111. Marcel Dekker, New York (1988)Google Scholar
  53. 53.
    Wu, K.S., van Osdol, W.W., Dauskardt, R.H.: Mechanical properties of human stratum corneum: effects of temperature, hydration, and chemical treatment. Biomaterials 27, 785–795 (2006)CrossRefPubMedGoogle Scholar
  54. 54.
    Rogiers, V., Derde, M.P., Verleye, G., Roseeuw, D.: Standardized conditions needed for skin surface hydration measurements. Cosmet. Toiletries 105, 73–82 (1990)Google Scholar
  55. 55.
    Wilhelm, K.P.: Possible pitfalls in hydration measurements. In: Elsner P., Barel A.O., Gabard B., Serup, J. (eds.) Current Problems in Dermatology: Skin Bioengineering Techniques and Applications in Dermatology and Cosmetology, vol. 26, pp. 223–234. Karger, Basel (1998)Google Scholar
  56. 56.
    Jemec, G.B.E., Serup, J.: Epidermal hydration and skin mechanics. Acta Derm. Venereol. 70, 245–247 (1990)PubMedGoogle Scholar
  57. 57.
    Jemec, G.B.E., Jemec, B., Jemec, B.I.E., Serup, J.: The effect of superficial hydration on the mechanical properties of human skin in vivo: implications for plastic surgery. Plast. Reconstr. Surg. 85, 100–103 (1990)CrossRefPubMedGoogle Scholar
  58. 58.
    Hendriks, F., Brokken, D., Oomens, C.W.J., Baaijens, F.P.T.: Influence of hydration and experimental length scale on the mechanical response of human skin in vivo, using optical coherence tomography. Skin Res. Technol. 10, 231–241 (2004)CrossRefPubMedGoogle Scholar
  59. 59.
    Hendley, A., Marks, R., Payne, P.A.: Measurement of forces for point indentation of the stratum corneum in vivo: the influences of age, sex, site delipidisation and hydration. Bioeng. Skin 3, 234–240 (1982)Google Scholar
  60. 60.
    Rodrigues, L.: The in vivo biomechanical testing of the skin and the cosmetological efficay claim support: a critical overview. In: Elsner, P., Merk, H.F., Maibach, H.I. (eds.) Cosmetics: Controlled Efficacy Studies and Regulation, pp. 197–208. Springer Verlag, Berlin (1999)Google Scholar
  61. 61.
    Boyer, G., Laquièze, L., Le Bot, A., Laquièze, S., Zahouani, H.: Dynamic indentation on human skin in vivo: ageing effects. Skin Res. Technol. 15, 55–67 (2009)CrossRefPubMedGoogle Scholar
  62. 62.
    Pailler-Mattei, C., Pavan, S., Vargiolu, R., Pirot, F., Falson, F., Zahouani, H.: Contribution of stratum corneum in determining bio-tribological properties of the human skin. Wear 263, 1038–1043 (2007)CrossRefGoogle Scholar
  63. 63.
    Christensen, M.S., Hargens, C.W., Nacht, S.B., Gans, E.H.: Viscoelastic properties of intact human skin: instrumentation, hydration effects, and the contribution of the stratum corneum. J. Invest. Dermatol. 69, 282–286 (1977)CrossRefPubMedGoogle Scholar
  64. 64.
    Papir, Y.O., Hsu, K., Wildnauer, R.H.: The mechanical properties of stratum corneum. I. The effect of water and ambient temperature on the tensile properties of newborn rat stratum corneum. Biochim. Biophys. Acta 399, 170–180 (1975)PubMedGoogle Scholar
  65. 65.
    Park, A.C., Baddiel, C.B.: Rheology of stratum corneum. I: a molecular interpretation of the stress-strain curve. J. Soc. Cosmet. Chem. 23, 3–12 (1972)Google Scholar
  66. 66.
    Wildnauer, R.H., Bothwell, J.W., Douglas, A.B.: Stratum corneum biomechanical properties. I. Influence of relative humidity on normal and extracted human stratum corneum. J. Invest. Dermatol. 56, 72–78 (1971)CrossRefPubMedGoogle Scholar
  67. 67.
    Yuan, Y., Verma, R.: Measuring microelastic properties of stratum corneum. Colloids Surf. B: Biointerfaces 48, 6–12 (2006)CrossRefGoogle Scholar
  68. 68.
    Batt, M.D., Fairhurst, E.: Hydration of the stratum corneum. Int. J. Cosmet. Sci. 8, 253–264 (1986)CrossRefPubMedGoogle Scholar
  69. 69.
    Persson, B.N.J.: Capillary adhesion between elastic solids with randomly rough surfaces. J. Phys.: Condens. Matter 20, 315007 (11p) (2008)Google Scholar
  70. 70.
    Wolfram, L.J.: Friction of skin. J. Soc. Cosmet. Chem. 34, 465–476 (1983)Google Scholar
  71. 71.
    Pailler-Matei, C., Nicoli, S., Pirot, F., Vargiolu, R., Zahouani, H.: A new approach to describe the skin surface properties in vivo. Colloids Surf. B: Biointerfaces 68, 200–206 (2009)CrossRefGoogle Scholar
  72. 72.
    Cua, A.B., Wilhelm, K.-P., Maibach, H.I.: Skin surface lipid and skin friction: relation to age, sex and anatomical region. Skin Pharmacol. 8, 246–251 (1995)CrossRefPubMedGoogle Scholar
  73. 73.
    Huber, G., Mantz, H., Spolenak, R., Mecke, K., Jacobs, K., Gorb, S.N., Arzt, E.: Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. PNAS 102, 16293–16296 (2005)CrossRefPubMedADSGoogle Scholar
  74. 74.
    Loden, M., Hagforsen, E., Lindberg, M.: The presence of body hair influences the measurement of skin hydration with the corneometer. Acta Derm. Venereol. 75, 449–450 (1995)PubMedGoogle Scholar
  75. 75.
    Diridollou, S., Patat, F., Gens, F., Vaillant, L., Black, D., Lagarde, J.M., Gall, Y., Berson, M.: In vivo model of the mechanical properties of the human skin under suction. Skin Res. Technol. 6, 214–221 (2000)CrossRefPubMedGoogle Scholar
  76. 76.
    Pailler-Mattei, C., Zahouani, H.: Analysis of adhesive behaviour of human skin in vivo by an indentation test. Tribol. Int. 39, 12–21 (2006)CrossRefGoogle Scholar
  77. 77.
    Zahouani, H., Pailler-Mattei, C., Sohm, B., Vargiolu, R., Cenizo, V., Debret, R.: Characterization of the mechanical properties of a dermal equivalent with human skin in vivo by indentation and static friction tests. Skin Res. Technol. 15, 68–76 (2009)CrossRefPubMedGoogle Scholar
  78. 78.
    Pailler-Mattei, C., Bec, S., Zahouani, H.: In vivo measurements of the elastic mechanical properties of human skin by indentation tests. Med. Eng. Phys. 30, 599–606 (2008)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Philips Applied TechnologiesEindhovenThe Netherlands
  2. 2.Leonardo Centre for Tribology and Surface TechnologyThe University of SheffieldSheffieldUK

Personalised recommendations