Tribology Letters

, Volume 37, Issue 2, pp 239–249 | Cite as

Mechanics of Deformation under Traction and Friction of a Micrometric Monolithic MoS2 Particle in Comparison with those of an Agglomerate of Nanometric MoS2 Particles

Original Paper

Abstract

Tribology of small inorganic nanoparticles in suspension in a liquid lubricant is often impaired because these particles agglomerate even when organic dispersants are used. In this paper we use lateral force microscopy to study the deformation mechanism and dissipation under traction of two extreme configurations (1) a large MoS2 particle (~20 μm width) of about 1 μm height and (2) an agglomerate (~20 μm width), constituting 50 nm MoS2 crystallites, of about 1 μm height. The agglomerate records a friction coefficient which is about 5–7 times that of monolithic particle. The paper examines the mechanisms of material removal for both the particles using continuum modeling and microscopy and infers that while the agglomerate response to traction can be accounted for by the bulk mechanical properties of the material, intralayer and interlayer basal planar slips determine the friction and wear of monolithic particles. The results provide a rationale for selection of layered particles, for suspension in liquid lubricants.

Keywords

Molybdenum disulfide Atomic force microscopy (AFM) Friction Solid lubricant additives 

Notes

Acknowledgments

The authors are grateful to Hindustan Petroleum Corporation Limited (HPCL), Mumbai, India for their support in carrying out this work. Our sincere thanks to Ms. P. Savitha for the help in carrying out this work.

References

  1. 1.
    Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids, Part II. Oxford University Press, London (1964)Google Scholar
  2. 2.
    Bhushan, B., Gupta, B.K.: Handbook of Tribology. McGraw-Hill, New York (1991)Google Scholar
  3. 3.
    Black, A.L., Dunster, R.W., Sanders, J.V.: Comparative study of surface deposits and behavior of MoS2 particles and molybdenum dialkyl-dithio-phosphate. Wear 13, 119–132 (1969)CrossRefGoogle Scholar
  4. 4.
    Gansheimerand, J., Holinsky, R.: A study of solid lubricants in oils and greases under boundary conditions. Wear 19, 439–449 (1972)CrossRefGoogle Scholar
  5. 5.
    Bell, M.E., Findlay, J.H.: Molydenite as a new lubricant. Phys. Rev. 59, 922–927 (1941)Google Scholar
  6. 6.
    Braithwaite, E.R., Rowe, G.W.: Principles and applications of lubrication with solids. Sci. Lubr. 15, 92–96 (1957)Google Scholar
  7. 7.
    Winer, W.O.: Molybdenum disulphide as a lubricant: A review of the fundamental knowledge. Wear 10, 422–452 (1967)CrossRefGoogle Scholar
  8. 8.
    Spalvins, T.: Morphological and frictional behavior of sputtered MoS2 films. Thin Solid Films 96, 17–24 (1982)CrossRefADSGoogle Scholar
  9. 9.
    Holinski, R., Gansheimer, J.: A study of the lubricating mechanism of molybdenum disulphide. Wear 19, 329–342 (1972)CrossRefGoogle Scholar
  10. 10.
    Buck, V.: Morphological properties of sputtered MoS2 films. Wear 91, 281–288 (1983)CrossRefGoogle Scholar
  11. 11.
    Fleischauer, P.D., Tolentino, L.U.: Effects of crystallite orientation on the environmental stability and lubrication properties of sputtered MoS2 thin films. ASLE Trans. 27, 82–88 (1984)Google Scholar
  12. 12.
    Roberts, E.W.: Thin solid lubricants in space. Tribol. Int. 23, 95–105 (1990)CrossRefGoogle Scholar
  13. 13.
    Miyoshi, K., Honecy, F.S., Abel, P.B., Pepper, S.V., Spalvins, T., Wheeler, D.R.: A vacuum (10–9 Torr) friction apparatus for determining friction and endurance like that of MoSx films. Tribol. Trans. 36, 351–358 (1993)CrossRefGoogle Scholar
  14. 14.
    Suzuki, M.: Comparison of tribological characteristics of sputtered MoS2 films coated with different apparatus. Wear 218, 110–118 (1998)CrossRefGoogle Scholar
  15. 15.
    Wang, D.Y., Chang, C.L., Chen, Z.Y., Ho, W.Y.: Microstructural characterization of MoS2-Ti composite solid lubricating films. Surf. Coat. Technol. 121, 629–635 (1997)CrossRefGoogle Scholar
  16. 16.
    Killeffer, D.H., Linz, D.: Molybdenum Compounds: Their Chemistry and Technology. Wiley Interscience, New York (1952)Google Scholar
  17. 17.
    Bowden, F.P., Tabor, D.: Friction: An Introduction to Tribology, vol. 91. Anchor, Garden City, New York (1973)Google Scholar
  18. 18.
    Singer I.L.: In: Singer, I.L., Pollock, H.M. (eds.) Fundamentals of Friction: Macroscopic and Microscopic Processes. Kluwer, Dordrecht (1992)Google Scholar
  19. 19.
    Dickinson, R.G., Pauling, L.: The crystal structure of molybdenite. J. Am. Chem. Soc. 45, 1466–1471 (1923)CrossRefGoogle Scholar
  20. 20.
    Bragg, W.: The investigation of the properties of thin films by means of X-rays. Nature 115, 266–269 (1925)CrossRefADSGoogle Scholar
  21. 21.
    Rapoport, L., Bilik, Yu., Feldman, Y., Homyonfer, M., Cohen, S.R., Tenne, R.: Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 387, 791–793 (1997)CrossRefADSGoogle Scholar
  22. 22.
    Rapoport, L., Feldman, Y., Homyonfer, M., Cohen, S.R., Solan, J., Hutchison, J.L., Tenne, R.: Inorganic fullerene-like material as additives to lubricants: structure–function relationship. Wear 225–229, 975–982 (1999)CrossRefGoogle Scholar
  23. 23.
    Tenne, R., Margulis, L., Genut, M., Hodes, G.: Polyhedral and cylindrical structures of tungsten disulphide. Nature 360, 444–446 (1992)CrossRefADSGoogle Scholar
  24. 24.
    Feldman, Y., Wasserman, E., Srolovitz, D.J., Tenne, R.: High-rate gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 267, 222–225 (1995)CrossRefPubMedADSGoogle Scholar
  25. 25.
    Joly-Pottuz, L., Martin, J.M., Dassenoy, F., Belin, M., Montagnac, G., Reynard, B., Fleischer, N.: Pressure-induced exfoliation of inorganic fullerene-like WS2 particles in a Hertzian contact. J. Appl. Phys. 99, 023524 (2006)CrossRefADSGoogle Scholar
  26. 26.
    Sahoo, R.R., Biswas, S.K. to be communicatedGoogle Scholar
  27. 27.
    Gubarevich, A.V., Usuba, S., Kakudate, Y., Tanaka, A., Odawara, O.: Diamond powders less than 100 nm in diameter as effective solid lubricants in vacuum. Jpn. J. Appl. Phys. II 43, L920–L923 (2004)CrossRefADSGoogle Scholar
  28. 28.
    Shafiei, M., Alpas, A.T.: Friction and wear mechanisms of nanocrystalline nickel in ambient and inert atmospheres. Metall. Mater. Trans. A 38, 1621–1631 (2007)CrossRefGoogle Scholar
  29. 29.
    Gubarevich, A.V., Usuba, S., Kakudate, Y., Tanaka, A., Odawara, O.: Frictional properties of diamond and fullerene nanoparticles sprayed by a high-velocity argon gas on stainless steel substrate. Diam. Relat. Mater. 14, 1549–1555 (2005)CrossRefGoogle Scholar
  30. 30.
    Moshkovith, A., Perfiliev, V., Lapsker, I., Fleischer, N., Tenne, R., Rapoport, L.: Friction of fullerene-like WS2 nanoparticles: Effect of agglomeration. Tribol. Lett. 24, 225–228 (2006)CrossRefGoogle Scholar
  31. 31.
    Singer, I.L.: Mechanics and chemistry of solids in sliding contact. Langmuir 12, 4486–4491 (1996)CrossRefGoogle Scholar
  32. 32.
    Wahl, K.J., Singer, I.L.: Quantification of a lubricant transfer process that enhances the sliding life of a MoS2 coating. Tribol. Lett. 1, 59–66 (1995)CrossRefGoogle Scholar
  33. 33.
    Wahl, K.J., Belin, M., Singer, I.L.: A triboscopic investigation of the wear and friction of MoS2 in a reciprocating sliding contact. Wear 214, 212–220 (1998)CrossRefGoogle Scholar
  34. 34.
    Devaprakasam, D., Khatri, O.P., Shankar, N., Biswas, S.K.: Boundary lubrication additives for aluminium: a journey from nano to macrotribology. Tribol. Int. 38, 1022–1034 (2005)CrossRefGoogle Scholar
  35. 35.
    Green, C.P., Lioe, H., Cleveland, J.P., Proksch, P., Mulvaney, P., Sader, J.E.: Normal and torsional spring constants of atomic force microscope cantilevers. Rev. Sci. Instrum. 75, 1988–1996 (2004)CrossRefADSGoogle Scholar
  36. 36.
    Cleveland, J.P., Manne, S., Bocek, D., Hansma, P.K.: A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev. Sci. Instrum. 64, 403–404 (1993)CrossRefADSGoogle Scholar
  37. 37.
    Ogletree, D.F., Carpick, R.W., Salmeron, M.: Calibration of frictional forces in atomic force microscopy. Rev. Sci. Instrum. 67, 3298–3306 (1996)CrossRefADSGoogle Scholar
  38. 38.
    Ma, S., Wang, X., Xing, Y., Zhang, X., Xu, K., Teer, D.G.: Microstructure and mechanical properties of MoS2/titanium composite coatings with different titanium content. Surf. Coat. Technol. 201, 5290–5295 (2007)CrossRefGoogle Scholar
  39. 39.
    Watanabe, S., Noshiro, J., Miyake, S.: Tribological characteristics of WS2/MoS2 solid lubricating multilayer films. Surf. Coat. Technol. 183, 347–351 (2004)CrossRefGoogle Scholar
  40. 40.
    Maugis, D.: Contact, Adhesion and Rupture of Elastic Solids. Springler-Verlag, Berlin, Germany (2000)MATHGoogle Scholar
  41. 41.
    Briscoe, B.J., Biswas, S.K., Sinha, S.K., Panesar, S.S.: The scratch hardness and friction of a soft rigid-plastic solid. Tribol. Int. 26, 183–193 (1993)CrossRefGoogle Scholar
  42. 42.
    Scharf, T.W., Prasad, S.V., Dugger, M.T., Kotula, P.G., Goeke, R.S., Grubbs, R.K.: Growth, structure, and tribological behavior of atomic layer-deposited tungsten disulphide solid lubricant coatings with applications to MEMS. Acta Mater. 54, 4731–4743 (2006)CrossRefGoogle Scholar
  43. 43.
    Simha, K.R.Y.: Fracture Mechanics for Modern Engineering Design. Universities Press, Hyderabad, India (2001)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations