Tribology Letters

, 37:75 | Cite as

Friction Properties of Carbon Nano-Onions from Experiment and Computer Simulations

  • L. Joly-Pottuz
  • E. W. Bucholz
  • N. Matsumoto
  • S. R. Phillpot
  • S. B. Sinnott
  • N. Ohmae
  • J. M. Martin
Original Paper


The carbon nano-onion can be considered as a new kind of interesting lubricating nanoparticle. Used as lubricant additives, carbon nano-onions lead to a strong reduction of both friction and wear, even at low temperature. To better elucidate the mechanisms by which these processes occur, coupled experimental and computational investigations are carried out. In addition, it is found that lubricious iron oxide nanoparticles are generated in the core of the steel contact through mechanisms that are not yet known. The molecular dynamics simulations of carbon onions placed between sliding diamond-like carbon surfaces at high contact pressure indicate that the lubrication mechanism of the onions is based on a coupled process of rolling and sliding inside the contact area. We conclude that most of carbon onions seem to remain intact under friction processes and do not generate graphitic planes, which is in contrast to the previously determined behavior of MoS2 fullerenes that are mainly exfoliated inside the contact area and liberate lubricating lamellar sheets of h-MoS2.


Carbon nano-onions Tribology Molecular dynamics simulations 



E.W.B. and S.B.S. acknowledge the support of the National Science Foundation (grant number CMMI-0742580). S.R.P. acknowledges the support of an AFOSR MURI. L.J.P. would like to thank the Japan Society for the Promotion of Science (JSPS) for its financial support in a part of this study.


  1. 1.
    Bushan, B., Gupta, B.K.: Handbook of Tribology: Materials Coatings and Surface Treatments. McGraw-Hill, New York (1991)Google Scholar
  2. 2.
    Grossiord, C., Varlot, K., Martin, J.M., Le Mogne, T., Esnouf, C., Inoue, K.: MoS2 single sheet lubrication by molybdenum dithiocarbamate. Tribol. Int. 31, 737–743 (1998)CrossRefGoogle Scholar
  3. 3.
    Tenne, R.: Inorganic nanotubes and fullerene-like nanoparticles. Nat. Nanotechnol. 1, 103–111 (2006)CrossRefPubMedADSGoogle Scholar
  4. 4.
    Joly-Pottuz, L., Dassenoy, F., Belin, M., Vacher, B., Martin, J.M., Fleischer, N.: Ultralow-friction and wear properties of IF-WS2 under boundary lubrication. Tribol. Lett. 18, 477–485 (2005)CrossRefGoogle Scholar
  5. 5.
    Joly-Pottuz, L., Martin, J.M., Dassenoy, F., Belin, M., Montagnac, G., Reynard, B., Fleischer, N.: Pressure-induced exfoliation of inorganic fullerene-like WS2 particles in a Hertzian contact. J. Appl. Phys. 99, 023524 (2006)CrossRefADSGoogle Scholar
  6. 6.
    Joly-Pottuz, L., Martin, J.M., Belin, M., Dassenoy, F., Montagnac, G., Reynard, B.: Study of inorganic fullerenes and carbon nanotubes by in situ Raman tribometry. Appl. Phys. Lett. 91, 153107 (2007)CrossRefADSGoogle Scholar
  7. 7.
    Rapoport, L., Bilik, Y., Feldman, Y., Homyonfer, M., Cohen, S.R., Tenne, R.: Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 387, 791 (1997)CrossRefADSGoogle Scholar
  8. 8.
    Joly-Pottuz, L., Dassenoy, F., Vacher, B., Martin, J.M., Mieno, T.: Ultralow friction and wear behaviour of Ni/Y-based single wall carbon nanotubes (SWNTs). Tribol. Int. 37, 1013–1018 (2004)CrossRefGoogle Scholar
  9. 9.
    Joly-Pottuz, L., Matsumoto, N., Kinoshita, H., Vacher, B., Belin, M., Montagnac, G., Martin, J.M., Ohmae, N.: Diamond-derived carbon onions as lubricant additives. Tribol. Int. 41, 69–78 (2008)CrossRefGoogle Scholar
  10. 10.
    Joly-Pottuz, L., Vacher, B., Ohmae, N., Martin, J.M., Epicier, T.: Anti-wear and friction reducing mechanisms of carbon nano-onions as lubricant additives. Tribol. Lett. 30, 69–80 (2008)CrossRefGoogle Scholar
  11. 11.
    Yuansheng, J., Shenghua, L.: Superlubricity of in situ generated protective layer on worn metal surfaces in presence of Mg6Si4O10(OH)8. In: Erdemir, A., Martin, J.M. (eds.) Superlubricity, p. 445. Elsevier, Amsterdam, The Netherlands (2007)Google Scholar
  12. 12.
    Buldum, A., Lu, J.P.: Atomic scale sliding and rolling of carbon nanotubes. Phys. Rev. Lett. 83, 5050–5053 (1999)CrossRefADSGoogle Scholar
  13. 13.
    Falvo, M.R., Steele, J., Taylor II, R.M., Superfine, R.: Gearlike rolling motion mediated by commensurate contact: Carbon nanotube on HOPG. Phys. Rev B 62, R10665–R10667 (2000)CrossRefADSGoogle Scholar
  14. 14.
    Miura, K., Sasaki, N.: Superlubricity of fullerene intercalated graphite composite. In: Erdemir, A., Martin, J.M. (eds.) Superlubricity, p. 161. Elsevier, Amsterdam, The Netherlands (2007)Google Scholar
  15. 15.
    Ni, B., Sinnott, S.B.: Tribological properties of carbon nanotubes bundles predicted from atomistic simulations. Surf. Sci. 487, 87–96 (2001)CrossRefADSGoogle Scholar
  16. 16.
    Joly-Pottuz, L.: Ph.D. Thesis (number 2005-24), Ecole Centrale de Lyon (2005)Google Scholar
  17. 17.
    Heo, S., Sinnott, S.B.: Effect of molecular interactions on carbon nanotube friction. J. Appl. Phys. 102, 064307 (2007)CrossRefADSGoogle Scholar
  18. 18.
    Kinoshita, H., Kume, I., Tagawa, M., Ohmae, N.: High friction of a vertically aligned carbon-nanotube film in microtribology. Appl. Phys. Lett. 85, 2780 (2004)CrossRefADSGoogle Scholar
  19. 19.
    Brenner, D.W., Shenderova, O.A., Harrison, J.A., Stuart, S.J., Ni, B., Sinnott, S.B.: A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons”. J. Phys.-Condes. Matter 14, 783–802 (2002)CrossRefADSGoogle Scholar
  20. 20.
    Lennard-Jones, J.E.: Cohesion. Proc. Phys. Soc. 43, 461–482 (1931)MATHCrossRefADSGoogle Scholar
  21. 21.
    Olla, M., Navarra, G., Elsener, B., Rossi, A.: Non destructive in-depth composition profile of oxy-hydroxide nanolayers on iron surfaces from ARXPS measurement. Surf. Interface Anal. 38, 964 (2006)CrossRefGoogle Scholar
  22. 22.
    Matsumoto, N.: Tribology of advanced carbon materials with focuses on onion-like carbon. Ph.D. Thesis, Kobe University (2009)Google Scholar
  23. 23.
    Matsumoto, N., Joly-Pottuz, L., Kinoshita, H., Ohmae, N.: Application of onion-like carbon to micro and macrotribology. Diam. Relat. Mater. 16, 1227–1230 (2007)CrossRefGoogle Scholar
  24. 24.
    Tomita, S., Sakurai, T., Ohta, H., Fujii, M., Hayashi, S.: Structure and electronic properties of carbon onions. J. Chem. Phys. 114, 7477–7482 (2001)CrossRefADSGoogle Scholar
  25. 25.
    Weast, R.C. (ed.): CRC Handbook of Chemistry and Physics, 49th edn. D-38-D-49. Cooperative Research Centre for Soil and Land Management (CRC), Boca Raton, FL (1968)Google Scholar
  26. 26.
    Srolovitz, D.J., Safran, S.A., Homyonfer, M., Tenne, R.: Phys. Rev. Lett. 1995, 1779 (1995)CrossRefADSGoogle Scholar
  27. 27.
    Bhushan, B., Gupta, B.K., Cleef, G.W.V., Capp, C., Coe, J.V.: Fullerene (C60) films for solid lubrication. Tribol. Trans. 36(4), 573–580 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • L. Joly-Pottuz
    • 1
    • 4
  • E. W. Bucholz
    • 2
  • N. Matsumoto
    • 3
  • S. R. Phillpot
    • 2
  • S. B. Sinnott
    • 2
  • N. Ohmae
    • 3
  • J. M. Martin
    • 1
  1. 1.Ecole Centrale de LyonLTDSEcullyFrance
  2. 2.Department of Materials Science and EngineeringUniversity of FloridaGainesvilleUSA
  3. 3.Faculty of Engineering, Department of Mechanical EngineeringKobe UniversityKobeJapan
  4. 4.INSA de Lyon, MATEISUniversity of Lyon, UMR 5510VilleurbanneFrance

Personalised recommendations